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Preface

Bandwidth extension (BWE) refers to methods that increase the frequency spectrum, or
bandwidth, of electronic signals. Such frequency extension is desirable if at some point
the frequency content of the signal has been reduced, as can happen, for example, during
recording, transmission (including storage), or reproduction, mostly because of economical
constraints. In this text, we limit the discussion to audio applications, which include music
and speech. Most of the BWE methods heavily use signal processing – in fact, it is almost
a premise that BWE is a signal-processing tool for achieving what is otherwise physically
not possible. As Chapter 4 shows, a combination of mechanical engineering and signal
processing can lead to interesting results as well.

BWE is a field that has seen increasing attention in recent years. Although some work
was done in the early years of the twentieth century, a much more systematic and large-
scale approach did not occur until recently. BWE for speech is the most mature area in
this field, as the primary application (telephony) has existed for a long time. It is the
objective of this book to gather most of the recent work into a single volume and present
a coherent framework to the reader. It is the first time an entire book has been devoted to
BWE theory, applications, and algorithms. It is intended as a broad introduction to BWE
topics, but also discusses in detail various applications, thereby including material from
scientific and patent literature, and also presents some previously unpublished work. The
latter can be found in Sec. 2.4 (BWE using frequency tracking), most of Chapter 3 (low-
frequency physical BWE systems), and Sec. 5.6 (high-frequency BWE using instantaneous
compression).

Bandwidth reduction implies a decrease in perceptual quality, and therefore BWE algo-
rithms are employed as tools to enhance the perceived quality of reproduced sound. In
most cases, BWE methods are therefore post-processing algorithms, occurring just before
sound reproduction, and the processing aims to compensate for the limited bandwidth
that is available in a prior part of the chain. Sometimes, however, bandwidth reduction
is actually desirable, for example, to enhance the coding efficiency of perceptual audio
codecs. With a little additional complexity and data storage, required bit rates can be
drastically reduced while maintaining subjective audio quality.

The main application areas discussed are bass enhancement for sound reproduction
(Chapters 2, 3, and 4), high-frequency enhancement for general audio (Chapter 5) and
speech (Chapter 6) applications. We include a short discussion on how BWE can be used
as a very effective noise-abatement technology (Chapter 7), and present an overview
of BWE patents (Chapter 8). Chapter 6, on BWE for speech, is contributed entirely by
Peter Jax, who did most of the presented work as part of his doctoral dissertation [128].
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In Appendix A, we present a brief overview of univariate and multidimensional scaling,
which can be very useful techniques for analyzing the outcome of subjective experiments;
an application example can be found in Sec. 2.5.

Although the BWE algorithms for the various application areas have many similarities
on a conceptual level, there are interesting differences. For example, BWE to enhance
bass reproduction on small loudspeakers, making use of the psychoacoustic effect of the
‘missing fundamental’, is largely focused on devising and analysing non-linear functions
that are used to generate harmonics of very low-frequency signals. The goal of this
technology is to allow a small loudspeaker to be used, giving a good percept of the
entire audible bass range (down to 20 Hz), while the loudspeaker may only be able to
physically radiate sound down to 100 Hz. A completely different approach is taken in
Chapter 4, where inherently inefficient small loudspeakers are mechanically transformed
into units that are highly efficient at only one frequency. Bass sounds from an entire bass
frequency band are then mapped to the particular frequency at which the loudspeaker can
radiate a considerable amount of energy. Thus, the problems of small loudspeakers at low
frequencies can be ameliorated with different BWE methods. As another example, high-
frequency enhancement of band-limited signals can be handled in two fundamentally
different ways. In the first case, nothing is known about the missing high-frequency
band, and one must resort to general procedures for recreating a ‘reasonable’ signal. The
emphasis is again on devising proper non-linear functions, the output signals of which
are then filtered to have a spectral envelope that is ‘reasonable’. On the other hand, if
some information is available about the missing high frequencies, the emphasis shifts to
modeling the high-frequency spectral envelope as accurately as possible, as it is known
that this is the dominating factor in achieving a high-quality signal. Both these approaches
are discussed in Chapter 5. Chapter 6 deals with high-frequency enhancement as well, but
for a very particular application, namely, telephonic speech. This application also demands
an algorithm that works without information about the missing high frequencies, but
because the signal is restricted to speech (and the band limitation is very well defined),
a very specialized algorithm can be developed, which works well on speech (but not on
other signals). It appears that the available low-frequency band contains information on
the spectral envelope of the high-frequency band. Note that a considerable portion of what
is presented in Chapter 2 (low-frequency psychoacoustic BWE systems) also applies to
material of Chapter 3 (low-frequency physical BWE systems), and to a lesser degree,
also to material of Chapter 5 (high-frequency BWE for audio). Therefore, Chapter 2 is
considerably larger in size than the latter two chapters and much cross-referencing will
be used to avoid repetition.

In most of the work that we present, we have tried to justify the approaches by consid-
ering psychoacoustical models of auditory perception. Because this may not be familiar to
all readers, some psychoacoustics is reviewed in Chapter 1. This chapter is titled ‘From
physics to psychophysics’ as we have presented a little background in all of the required
disciplines: signal processing, statistics of audio signals, loudspeakers, and psychoacous-
tics. Of course, these background materials cover only the basic concepts that would be
helpful for understanding the BWE topics in this book and are definitely not sufficient
to cover all that may be of interest. Therefore, references are given, as has been done
throughout the book, so that much of the relevant literature (both for background as well
as for more specific BWE material) can easily be found.
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Introduction

I.1 BANDWIDTH DEFINED

The word ‘bandwidth’ can apply to different situations. The IEEE Standard Dictionary of
Electrical and Electronics Terms [134] gives for the most relevant cases:

Definition 1 Bandwidth of a continuous frequency band: The difference between the
limiting frequencies.

Definition 2 Bandwidth of a waveform: The least frequency interval outside of which the
power spectrum of a time-varying quantity is everywhere less than some specified fraction
of its value at a reference frequency.

Definition 3 Bandwidth of a signal transmission system: The range of frequencies
within which performance, with respect to some characteristic, falls within specific limits
(usually 3 dB less than the reference or maximum value).

Two of the above definitions show that what exactly the bandwidth of a signal or trans-
mission system is will depend on a more or less arbitrary choice. For example, in Def. 3
the standard notion of ‘3 dB below the reference’ is indicated. This problem arises because
the power spectrum of a signal does not terminate abruptly, at least not for physically
realizable signals. An extensive study of bandwidth and the relations between time limit-
ing and frequency limiting was conducted by Slepian, Landau, and Pollack, and published
in a series of landmark papers [250, 154, 155]; a short overview of this work is presented
by Slepian [249].

‘Bandwidth extension’ (BWE) indicates the process of increasing the bandwidth of
a signal. In the context of this book, BWE is usually achieved by a signal-processing
algorithm. Sometimes, explicit use is made of the properties of the auditory system,
and the signal processing is done in such a way as to let the actual BWE take place
in the auditory system itself. The use of BWE implies that at some point bandwidth
reduction has taken place, which is the opposite of bandwidth extension. Examples of
where bandwidth reduction occurs are telephony, perceptual audio coding (at low bit
rates), and sound reproduction with non-ideal transducers; these examples will be further
explored in the various chapters of this book, and solutions in terms of BWE algorithms
are also presented.
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I.2 HISTORIC OVERVIEW

BWE methods are required because the systems they operate with are somehow sub-
optimal, and usually so by design. For example, loudspeakers can be built such that
they properly reproduce the entire audible frequency spectrum, down to 20 Hz; but such
systems would be very expensive and also very bulky. As another example, digital storage
and transmission of audio can be done without loss of information, but at a rather high
bit rate. To achieve higher storage (coding) efficiency such that more audio can be stored
with the same amount of bits, information has to be discarded. Telephony is another
example where economic constraints led to the design of a transmission system that had
the smallest bandwidth that could be used, while ensuring good speech intelligibility at
the price of a markedly reduced quality.

The process of being ever more economical is still going on, but at the same time
people demand the highest possible sound quality. Here, we briefly look at this from a
historical perspective.

I.2.1 ELECTROACOUSTIC TRANSDUCERS

Loudspeakers have been around for a long time, but the practicality of loudspeakers is
still limited. In 1954, Hunt [114] pointed out prosaically

‘Electroacoustics is as old and as familiar as thunder and lightning, but the knowl-
edge that is the power to control such modes of energy conversion is still a fresh
conquest of science not yet fully consolidated.’

This is still true today, and in fact one of the reasons for the need for BWE is the
limited bandwidth of transducers, in particular, electroacoustic transducers (devices to
convert electric energy into acoustic energy, or vice versa). Especially, low frequencies
are difficult to reproduce efficiently. We can classify electroacoustic transducers in the
following five categories:

• Electrodynamic: Movement is produced because of a current flow in a wire located in
a fixed magnetic field. Most drivers in audio and TV sets are of this type, and will be
discussed in greater detail in Sec. 1.3.2.

• Electrostatic: Movement is produced because of a force between two or more elec-
trodes with a (high) voltage difference. Condenser microphones are of this type; for
loudspeakers, they are mainly for Hi-Fi use.

• Magnetic: Movement is produced by attraction of metal due to an electromagnet. This
is very common for doorbells and hearing aids, but it is not very much in use for
loudspeakers.

• Magnetostriction: Movement is due to the magnetostriction effect – an effect arising
in a variety of ferromagnetic materials whereby magnetic polarization gives rise to
elastic strain, and vice versa.

• Piezoelectric: Movement is produced because of the direct and converse piezoelectric
effect – an effect arising in a variety of non-conducting crystals whereby dielectric
polarization gives rise to elastic strain, and vice versa. One usually sees this type of
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loudspeakers for high-frequency units (tweeters) only, since with a low voltage only
small movements can be achieved.

Each of these classes has its benefits and specific applications areas, but none can yield an
overall desirable performance. Then there are some other, more exotic methods of sound
transduction (which are not much in use), like:

• Laser loudspeakers, using the photoacoustic effect (Westervelt and Larson [296]).
• ‘Audio spotlight’, using interfering ultrasonic sound rays (Yoneyama and Fujimoto

[300], Pompei [211]) to make a narrow beam of audible sound from a small acoustic
source.

• ‘Singing display’, which is based on electrostatic forces between the plates of an LCD
display (description in Chapter 8).

• Flame loudspeaker (Gander [84]) and Ionophone (Russell [230]), using pyroacoustic
transduction.

After the discovery of electromagnetism in 1802 and Reiss’ telephone in 1860, it was
Bell, on 10 March 1876, who uttered the famous words ‘Mr. Watson, come here, I want
to see you!’, in the first successful electromagnetic transmission of speech. Not long after
Bell’s invention of the telephone, Charles Cuttris and Jerome Redding [55] (see also
Hunt [114]) filed a US patent application describing what appears as the first moving-coil
electroacoustic transducer. Various principles were explored, but it took until 1925 before
the loudspeaker came to its full growth, due to the work of Rice and Kellog [223]. This
year is generally considered as the birth of the modern loudspeaker. An intimidating array
of books, research papers and patents has been devoted to the science and technology
of transducers since 1925, a few of which are Beranek [28], Borwick [36], Gander [84],
Geddes and Lee [85], Hunt [114], McLachlan [172], and Olson [192]. Although a tremen-
dous amount of energy has been devoted to increasing the performance of transducers,
Chapter 4 presents, as a special case of a BWE system, an unusual loudspeaker design
that has the curious property that it has a very high efficiency at one (low) frequency
only. This frequency is then used to reproduce most of the low bass of the audio signal,
together with appropriate signal processing.

I.2.2 SOUND QUALITY

There is an ever-continuing desire to increase sound quality (which often competes with
economic constraints). From 1925 to 1926, the Edison Company sponsored ‘tone tests’,
recitals in which phonographic ‘re-creations’ of musicians, as reproduced by the Edison
‘Diamond Disc Phonograph’, were compared directly to live performances by those same
musicians (Thompson [269]). In auditoriums and concert halls across the US, curious
crowds gathered to engage in a very public kind of critical listening. Today, we can
hardly believe that these re-creations were indistinguishable from the original. But two
things can be observed: (1) Those gatherings can be considered as the start of the ‘A/B’
listening test, and (2) that most people increase their demands (or, perhaps, change their
expectations) for quality as soon as they get used to a certain quality level. After the
introduction of loudspeakers in the early 1920s, there was a demand for more bass and
more volume (Read and Welch [221, p239]), and this demand has never gone away.
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As electrical engineering advanced over the years, and especially with the advent of
digital technology, sound enhancement became possible through electronic means; nowa-
days, audio engineering relies heavily on signal-processing techniques. BWE is one of the
methods that can be used to enhance the quality of sound, which is especially attractive
in areas such as consumer electronics. In this market, sound quality is often sub-optimal
because of economic constraints on the size and cost of components. Most manufacturers
want to produce as cheaply as possible, yet retain a high subjective quality. Nonetheless,
quality does suffer, and in many cases a bandwidth reduction results. Electronic means
(such as BWE systems) are comparatively cheap and flexible, and play an ever-larger
role in determining the sound quality of audio systems. Chapter 2 presents several signal-
processing methods that allow a small loudspeaker to be used for reproducing a wide
low-frequency bandwidth, and is thus a prime example of how signal processing can
be used to circumvent physical/acoustical difficulties. Bandwidth reduction due to audio
compression can be (partially) negated by BWE algorithms discussed in Chapter 5, and in
Chapter 6, we show how speech quality can be improved using the existing narrow-band
telephone network.

I.3 BANDWIDTH EXTENSION FRAMEWORK

I.3.1 INTRODUCTION

Here we introduce BWE from a general point of view, adapted from Aarts et al. [10].
We focus on requirements that BWE algorithms need to comply with, both perceptual
as well as implementational (in a broad sense; more specific treatments are given in the
appropriate chapters). This overview is also useful because various BWE algorithms are
very similar from a conceptual point of view, even though in detail they can be quite
different. Keeping the general picture of BWE in mind makes it easier to find connections
between the topics discussed in the various chapters.

An obvious way to categorize various BWE methods is based on the frequency range of
interest. Some methods extend the low end of the audio spectrum, other methods extend
the high end of the spectrum. The classifications ‘low’ and ‘high’ in this sense are relative
to the remaining audio spectrum, and should not be considered in absolute sense. The
second categorization is to realize ‘where’ the signal bandwidth is actually extended: in
the auditory system or in the reproduced waveform. In other words, psychoacoustic or
physical. These four categories are indicated in Table I.1 (and in Fig. I.1), together with
references to the chapters where the various BWE categories are discussed. Finally, we

Table I.1 The four categories of BWE as function of
frequency band and type, with reference to the chapters
that cover that kind of BWE application. Chapter 1
covers background material, and Chapter 8 presents an
overview of BWE patents

Low band High band

Psychoacoustic Chapters 2, 7 N/A

Physical Chapters 3, 4 Chapters 5, 6
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Figure I.1 The four categories of bandwidth extension. Low-frequency psychoacoustic
BWE in the upper left panel, high-frequency psychoacoustic BWE in the upper right
panel (which as yet has no practical implementation), low-frequency physical BWE in
the lower left panel, and high-frequency BWE in the lower right panel. Energy from the
dashed frequency range ‘a’ is shifted to the dotted frequency range ‘b’. Adapted from
Aarts et al. [10]

can identify BWE algorithms that use a priori information about the desired frequency
components that need to be resynthesized, and those that use no such information. The
latter class is termed ‘blind’, the other ‘non-blind’. Generally, psychoacoustic BWE algo-
rithms are never blind, because it is not the signal that is bandlimited, but the transducer.
For the low-frequency psychoacoustic case, the application area is small loudspeakers,
which cannot radiate very low frequency components. These low frequencies are present
in the received signal, but have to be modified in such a way that the loudspeaker can
reproduce a signal that has the same pitch percept, yet does not physically contain very
low frequencies. High-frequency psychoacoustic BWE does not exist; it would require an
algorithm that can yield a ‘bright’ (in terms of timbre) sound percept without reproducing
the required high-frequency components. No known psychoacoustic effect can do this,
and therefore this technology does not exist1. Physical BWE methods can be either blind
or non-blind, because in these cases it is the signal that is bandlimited, not the trans-
ducer. The BWE algorithm has to resynthesize the missing frequency components from
the narrow-band input signal. This can be done quite well with a priori information about
the high frequencies, but it is also possible without such information (although usually at
a lower quality). In this book, we almost exclusively deal with blind BWE systems, the
exception being a kind of high-frequency BWE for audio, discussed in Sec. 5.5. It appears
that the four classes of blind algorithms (of which three have practical applications), all

1
Therefore, we simply use the term high-frequency BWE for what is in terms of the categorization of Table I.1

properly called high-frequency physical BWE.
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have similar requirements, and can be implemented in a broadly similar fashion (although
varying greatly on a more detailed level).

Blind algorithms can only use statistical information about the expected signals. This
calls for a more general approach than what non-blind algorithms would require, and in
the following text, we show how this generality can be exploited to cast the various BWE
categories into a generalized signal-processing framework. A signal-processing framework
is developed, which can be used to design BWE algorithms for many applications.

I.3.2 THE FRAMEWORK

I.3.2.1 Bandwidth Extension Categories

The four categories of BWE were already presented, and have been arranged in matrix
form in Fig. I.1, where the columns indicate either low- or high-frequency extension, and
the rows indicate psychoacoustic or physical BWE type. Each of the four graphs indicates
a stylized power spectrum of an audio signal. The arrow indicates the action of the BWE
algorithm: energy from the dashed frequency range ‘a’ is shifted to the dotted frequency
range ‘b’. Such ‘shifting’ of energy from one frequency range to the other obviously
needs to be done in a special way; this will be elaborately discussed in the remainder of
the book. The four indicated categories of BWE have the following characteristics:

1. Low-frequency physical BWE category : The lowest frequency components of the signal
are used to extend the lower end of the signal’s spectrum. Such an algorithm can
be used if the low-frequency bandwidth of the signal has been reduced in storage or
transmission; alternatively, the algorithm can be used for audio enhancement purposes,
even if no prior bandwidth reduction had taken place. The loudspeaker will need to
have an extended low-frequency response to reproduce the synthesized low frequencies.

2. Low-frequency psychoacoustic BWE category : The lowest frequency components of
the signal cannot be reproduced by the loudspeaker, and are shifted to above the
loudspeaker’s low cut-off frequency. This must be done in such a way as to preserve
the correct pitch and loudness of the low frequencies (and timbre as well, but this is
not entirely possible).

3. High-frequency BWE category : The highest frequency components of the signal are
used to extend the higher end of the signal’s spectrum. Such an algorithm can be
used if the high-frequency bandwidth of the signal has been reduced in storage or
transmission; alternatively, the algorithm can be used for audio enhancement, even
if no prior bandwidth reduction had taken place. The loudspeaker will need to have
an extended high-frequency response to reproduce the synthesized high frequencies
(which is usually not a problem).

4. High-frequency (psychoacoustic) BWE category : the highest frequency components of
the signal cannot be reproduced by the loudspeaker, and are shifted to below the
loudspeaker’s high cut-off frequency. This must be done in such a way as to preserve
the correct pitch, timbre, and loudness of the high frequencies. However, there is no
known psychoacoustic effect that evokes a bright timbre percept when only lower-
frequency components are present. Therefore, this category of BWE has no known
implementation.
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I.3.2.2 Perceptual Considerations

All of the BWE algorithms derive from one part of a signal’s spectrum, a second signal in
a different frequency range, which is then added to the input signal. The sum of these two
signals should blend together to form an enhanced version of the original. The analysis
by the auditory system should therefore group these two signals into the same stream,
yielding a single percept. Bregman [38] gives some clues as to what signal characteristics
are important in this grouping decision: pitch, timbre, and temporal modulation. If any
one of these parameters differs ‘too much’ between the two signals, the signals will be
segregated and be heard as two separate streams. This would constitute a failure of the
BWE algorithm. Therefore, we must ensure that all the said signal characteristics of the
synthetic signal remain as similar as possible to those of the original signal. On the other
hand, a slight dissimilarity between, say, the pitches of two signals, can be ‘overcome’ by
strong similarity in temporal modulation. Indicating the synthetic signal (output of BWE
algorithm) by y(t), and the input signal by x(t), we have the following considerations:

Pitch: x(t) and y(t) should have a similar tonal structure, that is, a common fundamental
frequency f0. If the signals are atonal (noise), then x(t) and y(t) should have simi-
lar moments (at least up to second order). We shall see that we can design efficient
algorithms such that the pitch of y(t) matches that of x(t).

Timbre: Timbre is usually associated with the spectral envelope, although temporal enve-
lope and spectral phase also have an influence. In the BWE algorithms, we can control
timbre to some extent by the correct design of filters.

Loudness: Similar temporal modulations for y(t) and x(t) are required for covarying
loudness of both signals, and can be achieved by ensuring that the amplitudes of y(t)

and x(t) are (nearly) proportional. The BWE algorithms described later on will usually
be linear in amplitude, so this is automatically taken care of.

Because there is little objective data available on how ‘close’ or ‘similar’ the mentioned
psychoacoustic parameters must be for x(t) and y(t) to be grouped, especially for realistic
audio signals, the tolerance of BWE algorithms for these grouping and segregation effects
is, to some degree, a matter of trial and error.

I.3.2.3 Implementational Considerations

Besides perceptual constraints, there are some constraints on the implementation of the
algorithms. These are not necessarily exclusive to BWE methods, but to most signal-
processing algorithms for use in consumer electronic applications. These constraints are:

1. Low computational complexity and low memory requirements.
2. Independence of signal format.
3. Applicable to music, speech and, preferably, both.

The first constraint is important for the algorithm to be a feasible solution for consumer
devices, which typically have very limited resources. Although the use of digital signal
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processors is becoming more widespread in consumer electronics, many signal-processing
features are usually implemented together, and each one may only use a fraction of the
total computing power.

Independence of signal format means that the algorithm is applied to a PCM-like
signal. Dependence on a certain coding or decoding scheme would limit the scope of the
algorithm. Of course, in some cases, this can lead to higher-quality output signals, as for
the SBR technology in high-frequency BWE application, discussed in Chapter 5.

The third constraint determines if we can use a detailed signal model or not. If the
application is limited to speech only, a speech model that allows a more accurate BWE
(Chapter 6) can be used. Signals not well described by the speech model, such as music,
would not give good results with this algorithm. Thus, if the nature of the processed
signals is unclear, a general algorithm must be used. Specialized BWE algorithms for
music would be more difficult to devise than those for speech, because the statistics
of musical signals depend heavily on the instrument being used; also, typically many
instruments are active simultaneously, whereas in speech applications the signal can be
assumed to derive from one sound source only. If we can decide for a given signal
whether it is music or speech, which can be done with a speech-music discriminator
(Aarts and Toonen Dekkers [6]), we can use BWE for music with strategies as discussed
in Chapter 5, and BWE for speech with strategies as discussed in Chapter 6.

I.3.2.4 Processing Framework

Figure I.2 presents the signal-processing framework that we propose for all categories
of BWE described here, and covers most of the BWE methods described elsewhere.
The general algorithm consists of two branches: one in which the input signal is merely
delayed, and one in which the bandwidth extension takes place. This bandwidth extension
is done by bandpass filtering the input signal (FIL1) to select a portion of the audio signal
(indicated by the letter ‘a’ in Fig. I.1). This portion is then passed to a non-linear device
(NLD), which ‘shifts’ the frequencies to a higher or lower region by a suitable non-linear
operation, according to the particular application. Subsequently, the signal is bandpass
filtered (FIL2), to obtain a suitable spectrum and timbre (the signal now has frequencies
in the range ‘b’, as shown in Fig. I.1). The resulting signal is amplified or attenuated as
desired and added back to the (delayed) input signal to form the output.

FIL1 FIL2NLD

DELAY

g

x (t) y (t)

Figure I.2 General BWE framework, also shown as high-frequency BWE structure in
Fig. 5.2. Similar structures are shown for low-frequency psychoacoustic BWE as Fig. 2.4
and for low-frequency physical BWE as Fig. 3.1
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A somewhat different approach is taken in Secs. 2.4 and 3.3.2.4, where a frequency
tracker is used and the harmonics signal is generated explicitly (not through non-linear
processing of the filtered input). For speech BWE methods, discussed in Chapter 6, the
same structure is used, but some of the processing steps are much more involved, in
particular, the filtering by FIL2. This filter is derived adaptively from the input signal.
For the non-blind BWE approach taken in Sec. 5.5, FIL2 is also adaptively determined,
in this case by control information embedded in a coded audio bitstream. In Sec. 5.6,
an extremely simplified algorithm (instantaneous compression) that only uses an NLD,
without any filters, is used; this method is only suitable in particular circumstances and
for particular signals.

Specific implementations for the NLD, which ‘shifts’ frequency components from low
to high values (or vice versa), will be given in later chapters covering the specific BWE
categories. They are based on generating harmonics or subharmonics of the signal passed
by FIL1. Nearly all of the NLDs discussed in the following chapters implicitly determine
the frequency of the incoming signal by its zero crossings (except the frequency tracker
of Secs. 2.4 and 3.3.2.4). For a pure tone of frequency f0, the situation is unambiguous,
and there are 2f0 zero crossings per second. But because FIL1 is a bandpass filter of finite
bandwidth, the signal going into the NLD will possibly contain more than one frequency
component, which will disturb the zero crossing rate γ (number of zero crossing per
second) of the signal. Fortunately, zero crossings appear to be quite robust in reflecting
the dominant frequency of a signal, which is known as the ‘dominant frequency principle’.
This principle can be made explicit by the ‘zero crossing spectral representation’ (Kedem
[141]) as

cos(πγ ) =

∫ π

0
cos ω dF(ω)∫ π

0
dF(ω)

, (I.1)

which holds for weakly stationary time series, with spectral distribution F(ω). For a pure
tone of frequency f0 = ω0/2π , we set F(ω) = δ(ω − ω0) in Eqn. I.1, and we find that
cos(πγ ) = cos ω0, which gives us the expected γ = 2f0. If the signal passed by FIL1
has multiple frequency components, one of which is dominant, the NLD will ‘detect’ this
frequency by the zero crossings of the signal, and construct a harmonics signal on the
basis of this dominant frequency.
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From Physics to Psychophysics

This first chapter does not present new material, but rather presents some backgrounds
for the various BWE topics. The selection of the material to be included in this chapter
is mainly motivated by what is considered to be a useful reference if unfamiliar concepts
are encountered in later chapters. To keep this backgrounds section concise, it will not
always contain all desired information, but references are provided for further reading (as
is done throughout the remainder of the book).

The topics covered in this chapter are basics in signal processing in Sec. 1.1, statistics
of speech and music in Sec. 1.2, acoustics (mainly concerning loudspeakers) in Sec. 1.3,
and auditory perception in Sec. 1.4.

1.1 SIGNAL THEORY

This section reviews some preliminaries for digital signal processing, most notably the
concepts of linearity versus non-linearity, and commonly used digital filter structures and
some of their properties. An understanding of these concepts is essential to appreciate the
algorithms presented in later chapters, but knowledge of more advanced signal processing
concepts would be very useful. If necessary, reviews of digital signal processing theory
and applications can be found in, for example, Rabiner and Schafer [217], Rabiner and
Gold [218], or Oppenheim and Schafer [194]. Van den Enden and Verhoeckx [281] also
present a good introduction into digital signal processing. Golub and Van Loan [93] is a
good reference for matrix computations, which are extensively used in Chapter 6.

1.1.1 LINEAR AND NON-LINEAR SYSTEMS

Consider a system that transforms an input signal x(t) into an output signal y(t). Assume
that this transformation can be described by a function g such that

y(t) = g(x(t)). (1.1)

Time invariance means that we must have

y(t − τ) = g(x(t − τ)), τ ∈ IR, (1.2)

Audio Bandwidth Extension E. Larsen and R. M. Aarts
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that is, the output of a time-shifted input is the time-shifted output. The system is linear iff

y1(t) = g(x1(t)),

y2(t) = g(x2(t)),

y1(t)+ y2(t) = g(x1(t)+ x2(t)), (1.3)

ay1(t) = g(ax1(t)), a ∈ IR. (1.4)

Equation 1.3 is called the superposition property, that is, the output of the sum of two
signals equals the sum of the outputs. Equation 1.4 is called the homogeneity property, that
is, the output of a scaled input equals the scaled output. If any of these two properties (or
both) do not hold, the system is non-linear. Vaidyanathan [278] introduces the terminology
homogeneous time-invariant for a time-invariant system, where Eqn. 1.3 is not true, while
Eqn. 1.4 is true; such systems are an important class for BWE algorithms, as we shall see
in Chapter 2 and following chapters. Note that these comments and equations are valid
for both continuous as well as discrete-time (sampled) systems.

Many mathematical techniques exist for analyzing properties of linear time-invariant
(LTI) systems, and some basic ones will be discussed shortly. For non-linear or time-
variant systems, such analysis often becomes very complicated or even impossible, which
is why one traditionally avoids dealing with such systems (or makes linear approximations
of non-linear systems). Nonetheless, non-linear systems can have useful properties that LTI
systems do not have. For BWE purposes, an important example is that LTI systems cannot
introduce new frequency components into a signal; only the amplitude and/or phase of
existing components can be altered. So, if the frequency bandwidth of a signal needs to be
extended, the use of a non-linear system is inevitable (and thus desirable). Note that non-
linearities in audio applications are often considered as generating undesirable distortion,
but controlled use of non-linearities, such as in BWE algorithms, can be beneficial.

1.1.2 CONTINUOUS-TIME LTI (LTC) SYSTEMS

A continuous-time LTI system will be abbreviated as LTC. Beside the input–output func-
tion g (Eqn. 1.1), an LTC system can be fully described by its impulse response h(t),
which is the output to a delta function δ(t) input1 (h(t) = g(δ(t))). Because the sys-
tem is linear, an arbitrary input signal x(t) can be written as an infinite series of delta
functions by

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ) dτ. (1.5)

Using this principle, we can calculate the output signal y(t) as

y(t) =
∫ ∞

−∞
x(τ)h(t − τ) dτ, (1.6)

1
A delta function is the mathematical concept of a function that is zero everywhere except at x = 0, and which

has an area of 1, that is,
∫∞
−∞ δ(x) dx = 1.
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which is called the convolution integral, compactly written as

y(t) = x(t) ∗ h(t). (1.7)

An LTC is called stable iff ∫ ∞

−∞
|y(t)| dt < ∞, (1.8)

and causal iff

h(t) = 0 for t < 0. (1.9)

The Fourier transform of the impulse response h(t) is called the frequency response
H(ω) – like h(t), H(ω) gives a full description of the LTC system. Here, ω is the angu-
lar frequency, related to frequency f as ω = 2πf . It is convenient to calculate the
frequency response (also called frequency spectrum, or simply spectrum) of the output of
the system as

Y (ω) = X(ω)H(ω). (1.10)

We see that convolution in the time domain equals multiplication in the frequency domain.
The reverse is also true, and therefore the Fourier transform has the property, which
is sometimes called “convolution in one domain is equal to multiplication in the other
domain”. A slightly more general representation is through the Laplace transform, yielding
X(s) as

X(s) =
∫ ∞

−∞
x(t)e−st dt, (1.11)

where s is the Laplace variable. For continuous-time, physical frequencies ω lie on the
y-axis, thus we can write s = iω (note that in practice the i is often dropped when writing
H(iω)). We can also write the LTC system function as

H(s) = c

∏N
i=1(s − zi)∏M
j=1(s − pj )

, (1.12)

where c is a constant. The zi are the N zeros of the system, and pj are the M poles,
either of which can be real or complex. The system will be stable if all poles lie in the
left hemifield, that is, �{pj } < 0.

As an example, a simple AC coupling filter may be considered: a capacitance of C F
connecting input and output, and a resistance of R � from output to the common terminal.
This system transfer function can be written as

H(s) = RCs

1+ RCs
, (1.13)

where the frequency response follows by substituting s = iω. Comparing Eqn. 1.12 with
Eqn. 1.13 shows that c = RC, N = 1, z1 = 0, M = 1, and p1 = − 1

RC
.
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The magnitude and phase of an LTC system function H(s) are defined as

|H(s)| =
[
�{H(s)}2 + �{H(s)}2

]1/2
, (1.14)

� H(s) = tan−1 �{H(s)}
�{H(s)} , (1.15)

respectively. From the phase response, we can define the group delay τd(ω), which can be
interpreted as the time delay of a frequency ω between input and output and is given by

τd(ω) = − d

dω
� H(iω). (1.16)

1.1.3 DISCRETE-TIME LTI (LTD) SYSTEMS

In DSP systems, the signals are known only at certain time instants kTs, where k ∈ Z

and Ts = 1/fs is the sampling interval, with fs being the sample frequency or sample
rate. Thus, these systems are known as discrete-time LTI systems, abbreviated as LTD.
According to the sampling theorem2, we can perfectly reconstruct a continuous-time signal
x(t) from its sampled version x(k) if fs is at least twice the highest frequency occurring
in x(t). To convert x(k) (consisting of appropriately scaled delta function at the sample
times) to x(t) (the continuous signal), a filter that has the following impulse response
needs to be applied

h(t) = sin(πt/Ts)

πt/Ts
. (1.17)

In the frequency domain, this corresponds to an ideal low-pass filter (‘brick-wall’ filter),
which only passes frequencies |f | < fs/2. System functions in the discrete-time domain
are usually described in the z domain (z being a complex number) as H(z), rather than
the s domain. Likewise, the corresponding input and output signals are denoted as X(z)

and Y (z) (Jury [138]). X(z) can be obtained from x(k) through the Z-transform

X(z) =
∞∑

k=−∞
x(k)z−k. (1.18)

Normalized physical frequencies � in discrete time lie on the unit circle, thus z = e−i�;
therefore |�| ≤ π .

There are various ways to convert a known continuous-time system function H(s) to its
discrete-time counterpart H(z), all of which have various advantages and disadvantages.
The most widely used method is the bilinear transformation, which relates s and z as

s = 2

Ts

1− z−1

1+ z−1
. (1.19)

2
The sampling theorem is frequently contributed to Shannon’s work in the 1940s, but, at the same time,

Kotelnikov worked out similar ideas, and, a few decades before that, Whitaker. Therefore, some texts use the term
WKS-sampling theorem (Jerri [135]).
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Applying this to the example of Eqn. 1.13, we find

H(z) = k(1− z−1)

1+ k + (1− k)z−1
, (1.20)

with k = 2RC/Ts, a dimensionless quantity. Like Eqn. 1.12, we can write H(z) in a
similar manner, with a zero at z1 = 1 and a pole at p1 = k−1

k+1 . Substituting z = e−i� in
Eqn. 1.20 gives the frequency response H(e−i�). Stability for LTD systems requires that
all poles lie within the unit circle, that is, |pj | < 1. Magnitude, phase, and group delay
of an LTD system are defined analogously as for LTC systems (Eqns. 1.14–1.15).

1.1.4 OTHER PROPERTIES OF LTI SYSTEMS

There are a few other properties of LTI systems that are of interest. We will discuss these
using LTD systems, but analogous equations hold for LTC systems.

We have already found that stability requires that all poles must lie within the unit
circle, that is, |pj | < 1. Where the locations of zeros zj are concerned, the system is
called minimum phase if all |zj | < 1. This is of interest because a minimum-phase system
has a stable inverse. To see this, note that

H−1(z) =
[
c

∏N
i=1(z− zi)∏M
j=1(z − pj )

]−1

= c−1

∏M
j=1(z − pj )∏N
i=1(z− zi)

, (1.21)

that is, the poles become zeros, and vice versa. We can conclude that a stable minimum-
phase system has an inverse, which is also stable and minimum phase. A non-minimum-
phase system cannot be inverted3. A ‘partial inversion’ is possible by splitting the system
function into a minimum-phase and a non-minimum-phase part and then inverting the
minimum-phase part (Neely and Allen [184]).

A linear-phase system H(z) is one for which � H(z) = −aω (a > 0), that is, the phase
is a linear function of frequency. It implies that the group delay is a constant τd(ω) = a,
which is often considered to be beneficial for audio applications. For H(z) to be linear
phase, the impulse response h(k) must be either symmetric or anti-symmetric.

1.1.5 DIGITAL FILTERS

The simplest digital filter is H(z) = z−1, being a delay of one sample. If one cascades
N + 1 such delays and sums all the scaled delayed signals, one gets a filter as depicted
in Fig. 1.1. Such a filter is called a finite impulse response (FIR) filter, since its impulse
response is zero after N time samples. Its system function is written as

H(z) = Y (z)

X(z)
=

N∑
i=0

biz
−1, (1.22)

3
A practical example of a non-minimum-phase system is a room impulse response between a sound source and

a receiver (unless they are very close together).
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Figure 1.1 A finite impulse response (FIR) filter. The input signal x(k) is filtered, yield-
ing the output signal y(k). The boxes labeled ‘T ’ are one sample (unit) delay elements.
The signal at each tap is multiplied with the corresponding coefficients b
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Figure 1.2 An infinite impulse response (IIR) filter in direct form-I structure. The input
signal x(k) is filtered by the filter, yielding the output signal y(k). The boxes labeled
‘T ’ are one sample (unit) delay elements. The signal at each forward tap is multiplied
with the corresponding coefficients b, while the signal in the recursive (feedback) part is
multiplied with the corresponding coefficients a, respectively

and the frequency response can be found by substituting z = e−i�. It is obvious that an
FIR filter has only zeros and no poles. Therefore, it is guaranteed to be stable. Note that
an FIR filter need not be minimum phase, and therefore a stable inverse is not guaranteed
to exist.

By applying feedback to a filter, as shown in Fig. 1.2, a filter with an infinite impulse
response (IIR) can be made. Its system function is written as

H(z) = Y (z)

X(z)
=

∑N
i=0 biz

−1

1−∑M
j=1 aiz−1

. (1.23)

This shows that, in general, an IIR filter has both zeros and poles; therefore, an IIR filter
would be unstable if any of the poles lie outside the unit circle. An IIR filter can be both
minimum- and non-minimum phase. While the structure of Fig. 1.2 can implement any
IIR filter, it is, for practical reasons (like finite word-length calculations), more customary
to partition the filter by cascading ‘second-order sections’ (IIR filters with two delays in
both forward and feedback paths), also known as biquads.
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FIR and IIR filters have a number of differences, as a result of which each of them
has specific applications areas, although overlap exists, of course. The most important
differences (for BWE purposes) are:

• Phase characteristic: Only FIR filters can be designed to have linear phase; IIR filters
can only approximate linear phase at a greatly increased complexity. In Sec. 2.3.3.3,
it is discussed why a linear-phase characteristic is beneficial for a particular BWE
application.

• Computational complexity : For both FIR and IIR filters, the computational complex-
ity is proportional to the number of coefficients used. However, for an FIR filter,
the number of coefficients directly represents the length of the impulse response, or,
equivalently, the frequency selectivity. An IIR filter has the advantage that very good
frequency selectivity is possible using only a small number of coefficients. Therefore,
IIR filters are generally much more efficient than FIR filters. For low-frequency BWE
applications, filters with narrow passbands are often required, centered on very low
frequencies; in such cases, IIR filters are orders of magnitude more efficient than FIR
filters.

It will be apparent that the choice of FIR or IIR depends on what features are important
for a particular application. Sometimes, as in some BWE applications, both linear phase
and high frequency selectivity are very desirable. In such cases, IIR filters can be used,
but in a special way and at a somewhat increased computational complexity and memory
requirement (see e.g. Powell and Chau [213]).

1.2 STATISTICS OF AUDIO SIGNALS

For BWE methods, it is important to know the spectrum of the audio signal. Because
these signals are generally not stationary, the spectrum varies from moment to moment,
and the spectrogram is useful to visualize this spectro-temporal behaviour of speech and
music. First we will consider speech, and then music. For both cases, we will make it
plausible that certain bandwidth limitations can be overcome by suitable processing. Some
of the material in this chapter is taken from Aarts et al. [10].

1.2.1 SPEECH

Speech communication is one of the basic and most essential capabilities of human
beings. The speech wave itself conveys linguistic information, the speaker’s tone, and
the speaker’s emotion. Information exchange by speech clearly plays a very significant
role in our lives. Therefore, it is important to keep speech communication as transparent
as possible, both to be intelligible as well as to be natural. Unfortunately, owing to band-
width limitation, both aspects can suffer. But, because a lot is known about the statistics
of speech, specialized BWE algorithms can be used to restore, to a large extent, missing
frequency components, if the available bandwidth is sufficiently large. This is explored
in detail in Chapter 6.

Speech can be voiced or unvoiced (tonal or noise-like), see, for example, Furui [80],
Olive et al. [191], Rabiner and Schafer [217], and Fig. 6.4. A voiced sound can be mod-
elled as a pulse source, which is repeated at every fundamental period 1/fp (where fp
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is the pitch), while an unvoiced sound can be modelled as a white noise generator. The
loudness of speech is proportional to the peak amplitudes of the waveform. Articulation
can be modelled as a cascade of filters – these filters simulate resonant effects Ri (for-
mants) in the vocal tract, which extends from the vocal cords to the lips, including the
nasal cavity. Consequently, any harmonic of the series of pulses with frequency kfp that
happens to lie close to one of the Ri is enhanced. To make the various vowel sounds,
a speaker or singer must change these vocal tract resonances by altering the configura-
tion of tongue, jaw, and lips. The distinction between different vowel sounds in Western
languages is determined almost entirely by R1 and R2, the two lowest resonances, that
is, vowels are created by the first few broad peaks on the spectral envelope imposed on
the overtone spectrum, by vocal tract resonances. For the vowel sound in ‘hood’, pro-
nounced by a male speaker, R1 ≈ 400 Hz and R2 ≈ 1000 Hz. In contrast, to produce
the vowel in ‘had’, R1 and R2 must be raised to about 600 and 1400 Hz respectively,
by opening the mouth wider and pulling the tongue back. For women, the characteristic
resonance frequencies are roughly 10% higher. But for both sexes, the pitch frequency fp
in speech and singing is generally well below R1 for any ordinary vowel sound – except
when sopranos are singing very high notes, in which case they raise R1 towards fp (Goss
Levi [160], Joliveau et al. [137]). Finally, radiation of speech sounds can be modelled as
arising from a piston sound source attached to an infinite baffle, like a loudspeaker model
discussed in Sec. 1.3.2. The range of frequencies for speech is roughly between 100 and
8 kHz (whereas the ordinary telephone channel is limited between 300 and 3400 Hz).

An important parameter for speech is the fundamental frequency or pitch. Furui [80]
presents a statistical analysis of temporal variations in the pitch of conversational speech
for individual talkers, which indicates that the mean and standard deviation for a female
voice are roughly twice those of a male voice. This is shown in Fig. 1.3. The pitch
distributed over talkers on a logarithmic frequency scale (not the linear scale of Fig. 1.3)
can be approximated by two normal distributions that correspond to the male and female
voice, respectively. The mean and standard deviation for a male voice are 125 and 20.5 Hz,
respectively, whereas those for a female voice are twice as large. Conversational speech
includes discourse as well as pause, and the proportion of actual speech periods relative
to the total period is called ‘speech ratio’. In conversational speech, the speech ratio for
individual talkers is about 1/3 (Furui [80]), and can be used as a feature for speech
detection in a speech–music discriminator (Aarts and Toonen Dekkers [6]).

In order to gain insight in the long-term average of speech spectra, six speech fragments
of utterances of various speakers of both sexes were measured. Figure 1.4 shows the power
spectra of tracks 49–54 of the SQAM disk [255]. To parameterize the spectra in the plot,
we derived the following heuristic formula

|H(f )| ≈

(
f

fp

)6

1+
(

f

fp

)6

1

1+ f

1000

, (1.24)

were f is the frequency and fp the pitch of the voice. Byrne et al. [42] have shown that
there is not much difference in the long-term speech spectra of different languages. The
first factor in the product of Eqn. 1.24 denotes the high-pass behavior, and the second
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Figure 1.3 Male (•)/female pitch (×), adapted from Furui [80]. The mean and standard
deviation for male voice pitch is 125 ± 20.5 Hz and are twice these values for female
voice pitch

(dB)

rms
V2

-70.0

-20.0

 6.25

 /Div

10 Log (Hz) 10k

   10Avg  0%OvlpPOWER SPEC1

FxdXY

SQAM tr 49  00:00-00:19

SQAM tr 50  00:00-00:18

SQAM tr 51  00:00-00:17

SQAM tr 52  00:00-00:20

SQAM tr 53  00:00-00:17

SQAM tr 54  00:00-00:17
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Figure 1.5 Equation 1.24 is plotted (curve without marker) for a male voice (fp =
120 Hz, offset by 60 dB), together with the data from Byrne et al. [42] for males (squares)
and females (triangles). Note that the parameterization of Eqn. 1.24 fits the empirical data
for the male voice quite well (the female voice would have to be modelled with a higher
pitch value)

one the low-pass behaviour. It shows that there is a steep slope at low frequencies, and
a rather modest slope at high frequencies, as is depicted in Fig. 1.5. The lowest pitch
of the male voice is about 120 Hz (see Fig. 1.3), which corresponds very well with the
high-pass frequency in Eqn. 1.24, and Fig. 1.4. The telephone range is 300–3400 Hz,
which clearly is not sufficient to pass the high-frequency range, nor the lowest male
fundamental frequencies (and also not most female fundamental frequencies). A BWE
algorithm that can recreate the fundamental (and possibly the lower harmonics) and the
high-frequency band of speech signals should be able to create a more natural sounding
speech for telephony.

Because the speech spectrum changes over time, it is instructive to compute spectra
at frequent intervals and display the changing spectra. A spectrogram is shown for a
particular speech sample in Fig. 1.6 (b); the pitch of the voice is time-varying, as can be
seen in (c). A BWE algorithm must be able to follow these pitch changes and change
its output frequencies accordingly. Fig. 1.7 shows a waveform and spectrogram (a and
b) of the same speech utterance, and an 8-kHz low-pass filtered version thereof, which
could occur in perceptual audio coders at very high compression rates; the telephone
channel would low-pass filter the signal even more severely at 3.4 kHz. A high-frequency
BWE algorithm can resynthesize an octave of high-frequency components, as shown in
Fig. 1.7(c); note the similarities and differences with respect to the original spectrogram.
High-frequency BWE algorithms are discussed in Chapters 5 (audio) and 6 (speech).
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as determined by a pitch tracker (‘Praat’, Boersma and Weenink [35])
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that has been low-pass filtered at 8 kHz (spectrogram in c). The processed signal (extended
to 16 kHz) is displayed as a spectrogram in d
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1.2.2 MUSIC

More than 70 years ago, Sivian et al. [248] performed a pioneering study of musical spec-
tra using live musicians and – for that time – innovative electronic measurement equip-
ment. Shortly after the introduction of the CD, this study was repeated by Greiner and
Eggers [99] by using modern digital equipment and modern source material, at that time
CDs. The result of both studies was a series of graphs showing for each instrument or
ensemble the spectral amplitude distribution of the performed musical passage. The find-
ings were that, in general, musical spectra have a bandpass characteristic, the exact shape
of which is determined by the music and the instrument. As in speech, the fundamental
frequency (pitch) is time varying. A complicating factor is that various instruments may
be playing together, creating a superposition of several complex tones.

An example is shown in Fig. 1.8, where the variable time–frequency characteristic of
a 10-s excerpt of music is shown (‘One’, by Metallica). The waveform is shown in (a),
and (b) shows a spectrogram (frequencies 0–140 Hz) of the original signal. The energy
extends down to about 40 Hz. By using a low-frequency physical BWE algorithm, we
can extend this lower limit to about 20 Hz (c), which requires a subwoofer of excellent
quality for correct reproduction. Because the resulting synthetic frequencies have similar
spectro-temporal characteristics as the original low frequencies, they will be perceived
as an integral part of the signal (lowering the pitch of the bass tones to 20 Hz). Because
of the very low frequencies that are now being radiated, it will also add ‘feeling’ to the
music. Low-frequency physical BWE algorithms are discussed in Chapter 3.

Another study (Fielder and Benjamin [70]) was conducted to establish design criteria
for the performance of subwoofers to be used for the reproduction of music in homes. The
focus on subwoofers was motivated by the fact that low frequencies play an important
role in the musical experience. A first conclusion of that study was that recordings with
audible bass below 30 Hz are relatively rare. Second, these very low frequencies were
generated by pipe organs, synthesizers, or special effects and environmental noise. Other
instruments, such as bass guitar, bass viol, tympani, or bass drum, produce relatively little
output below 40 Hz, although they may have very high levels at or above that frequency.
Fielder and Benjamin [70] gave an example that for an average listening room of 68 m3,
the required acoustic power for reproduction is 0.0316 W (which yields a sound pressure
level of 97 dB), which requires a volume displacement of 0.685 l at 20 Hz. This requires an
excursion of 13.5 mm for a 10 in. (0.25 m) woofer. These are extraordinary requirements,
and very hard to fulfil in practice. An alternative is to use low-frequency psychoacoustic
BWE methods, where frequencies that are too low to reproduce are shifted to higher
frequencies, in such a way that the pitch percept remains the same. These methods are
discussed in Chapter 2. If we consider Fig. 1.8 (c) as the original signal, we could think
of such BWE as shifting the frequency band 20–40 Hz to above 40 Hz. The spectrogram
of the resulting signal would resemble that of Fig. 1.8(b).

1.3 LOUDSPEAKERS

1.3.1 INTRODUCTION TO ACOUSTICS

BWE methods are closely related to acoustics, particularly acoustics of loudspeakers,
so here we will review some basic concepts in this area. Extensive and more general
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Figure 1.8 A 10-s excerpt of music (a), and its spectrogram for frequencies 0–140 Hz
(b), which shows that the lowest frequencies contained in the signal are around 40 Hz. A
low-frequency physical BWE algorithm can extend this low-frequency spectrum down to
about 20 Hz, as shown in (c). Because the additional frequency components have a proper
harmonic relation with the original frequency components, and have a common temporal
modulation, they will be perceived as part of the original sound. In this case, the pitch of
the bass notes will be lowered to 20 Hz
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treatments of acoustics can be found in textbooks such as Kinsler et al. [142], Pierce
[208], Beranek [28], Morse and Ingard [180]. Acoustics can be defined as the generation,
transmission, and reception of energy in the form of vibrational waves in matter. As the
atoms or molecules of a fluid or solid are displaced from their normal configurations,
an internal elastic restoring force arises. Examples include the tensile force arising when
a spring is stretched, the increase in pressure in a compressed fluid, and the transverse
restoring force of a stretched wire that is displaced in a direction normal to its length. It
is this elastic restoring force, together with the inertia of the system, that enables matter
to exhibit oscillatory vibrations, and thereby generate and transmit acoustic waves. Those
waves that produce the sensation of sound are of a variety of pressure disturbances that
propagate through a compressible fluid.

1.3.1.1 The Wave Equation

The wave equation gives the relation between the spatial (r) and temporal (t) derivates
of pressure p(r, t) as

	2p(r, t) = 1

c2

∂2p(r, t)

∂t2
(1.25)

where c is the speed of sound, which for air at 293 K is 343 m/s. Equation 1.25 is the
linearized, loss-less wave equation for the propagation of sounds in linear inviscid fluids.
As a special case of the wave equation, we can consider the one-dimensional case, where
the acoustic variables are only a function of one spatial coordinate, say along the x

direction. Equation 1.25 then reduces to

∂2p(x, t)

∂x2 = 1

c2

∂2p(x, t)

∂t2 . (1.26)

The solution of this equation yields two wave fields propagating in ±x directions, which
are called plane (progressive) waves. Sound waves radiated by a loudspeaker are consid-
ered to be plane waves in the ‘far field’.

1.3.1.2 Acoustic Impedance

The ratio of acoustic pressure in a medium to the associated particle velocity is called the
specific acoustic impedance4 z(r)

z(r) = p(r)
u(r)

. (1.27)

For plane progressive waves (Eqn. 1.26), this becomes

z = ρ0 c, (1.28)

independent of x, where ρ is the density of the fluid, being 1.21 kg/m3 for air at 293 K.

4
Similar to Ohm’s law for electrical circuits.
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Table 1.1 Typical sounds and their cor-
responding SPL values (dB)

Threshold of hearing 0
Whispering 20
Background noise at home 40
Normal talking 60
Noise pollution level 90
Pneumatic drill at 5 m 100
1 m from a loudspeaker at a disco 120
Threshold of pain 140

1.3.1.3 Decibel Scales

Because of the large range of acoustical quantities, it is customary to express values in
a logarithmic way. For sound pressure, we define the sound pressure level (SPL) Lp in
terms of decibel (dB), as

Lp = 20 log(p/p0), (1.29)

where p0 is a reference level (the log is base 10, as will be used throughout the book), for
air p0 = 20 µPa is used. This level is chosen such that it corresponds to the just-noticeable
sound pressure level of a 2-kHz sinusoid for an 18-year-old person with normal hearing,
see Fig. 1.18 and ISO 226-1987(E) [117]. Table 1.1 lists some typical sounds and their
corresponding SPL values. It is convenient to memorize some dB values for the ratio’s√

2/2, 2, 10, and 30 as approximately 3, 6, 20, and 30 dB.

1.3.2 LOUDSPEAKERS

1.3.2.1 Electrodynamic Loudspeakers

Electroacoustic loudspeakers have been around for quite some time. While the first patent
for a moving-coil loudspeaker was filed in 1877, by Cuttriss and Redding [55], shortly
after Bell’s [27] telephone invention, the real impetus to a commercial success was given
by Rice and Kellog [223] through their famous paper, so that we can state that the
classical electrodynamic loudspeaker as we know now (depicted in Fig. 1.10), is over
80 years old. All practical electroacoustical transducers are limited in their capabilities,
owing to their size and excursion possibilities. Among those limitations, there is one in
the frequency response, which will be the main topic in the following sections. To study
these limitations, we will scrutinize the behaviour of transducers for various parameters.
It will appear later that the ‘force factor’ (Bl) of a loudspeaker plays an important role.
To have some qualitative impression regarding the band limitation, various curves are
shown in Fig. 1.9. We clearly see that there is a band-pass behaviour of the acoustical
power Pa (fifth curve in Fig. 1.9), and a high-pass response for the on-axis pressure p

(third curve in Fig. 1.9).
First, we will discuss the efficiency of electrodynamic loudspeakers in general, which

will be used in a discussion about a special driver with a very low Bl value in Sec. 4.3.
This driver can be made very cost efficient, low weight, flat, and with high power
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Figure 1.9 The displacement x, velocity v, acceleration a, together with the on-axis
pressure p, the real part of the radiation impedance �{Zrad}, and the acoustical power
Pa of a rigid-plane piston in an infinite baffle, driven by a constant force. The numbers
denote the slopes of the curves; multiplied by 6, these yield the slope in dB/octave

efficiency. But first (Sec. 1.3.2.3), we show that sound reproduction at low frequencies
with small transducers, and at a reasonable efficiency, is very difficult. The reasons for
this are that the efficiency is inversely proportional to the moving mass and proportional
to the square of the product of cone area and force factor Bl.

1.3.2.2 Construction

An electrodynamic loudspeaker, of the kind depicted in Fig. 1.10, consists of a conical
diaphragm, the cone, usually made of paper, being suspended by an outer suspension
device, or rim, and an inner suspension device, or spider. The suspension limits the
maximum excursion of the cone so that the voice coil remains inside the air gap of the
permanent magnet. This limitation can lead to non-linear distortion; see for example,
Tannaka et al. [264], Olson [193], Klippel [143, 144], Kaizer [140]. The voice coil is
attached to the voice coil cylinder, generally made of paper or metal, which is glued to
the inner edge of the cone. In most cases, the spider is also attached to this edge. The voice
coil is placed in the radial magnetic field of a permanent magnet and is fed with the signal
current of the amplifier. For low frequencies, the driver can be modelled in a relatively
simple way, as it behaves as a rigid piston. In the next section the electronic behavior of the
driver will be described on the basis of a lumped-element model in which the mechanical
and acoustical elements can be interpreted in terms of the well-known properties of
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Figure 1.10 Cross section of an electrodynamic cone loudspeaker

their analogous electronic-network counterparts. At higher frequencies (above the cone
break-up frequency), deviations from this model occur, as the driver’s diaphragm is then
no longer rigid. Both transverse and longitudinal waves then appear in the conical shell.
These waves are coupled and together they determine the vibration pattern, which has a
considerable effect on the sound radiation. Although this is an important issue, it will not
be considered here (see e.g. Kaizer [140], Frankort [75], van der Pauw [282]).

An alternative construction method is to have the voice coil stationary, and a moving
magnet; this will be discussed in Sec. 4.3.1.

1.3.2.3 Lumped-element Model

For low frequencies, a loudspeaker can be modelled with the aid of some simple elements,
allowing the formulation of some approximate analytical expressions for the loudspeaker
sound radiation due to an electrical input current, or voltage, which proves to be quite
satisfactory for frequencies below the cone break-up frequency. The extreme acceler-
ations experienced by a typical paper cone above about 2 kHz, cause it to flex in a
complex pattern. The cone no longer acts as a rigid piston but rather as a collection of
vibrating elements.

The forthcoming loudspeaker model will not be extensively derived here, as that has
been done elsewhere; see for example, Olson [192], Beranek [28], Borwick [36], Merhaut
[173], Thiele [268], Small [252], Clark [51]. We first reiterate briefly the theory for the
sealed loudspeaker. In what follows, we use a driver model with a simple acoustic air
load. Beranek [28] shows that for a baffled piston this air load is a mass of air equivalent
to 0.85a in thickness on each side of a piston of radius a. In fact, the air load can exceed
this value, since most drivers have a support basket, which obstructs the flow of air from
the back of the cone, forcing it to move through smaller openings. This increases the
acceleration of this air, augmenting the acoustic load.
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Table 1.2 System parameters of the model of
Fig. 1.11

Re Electrical resistance of the voice coil
Le Inductance of the voice coil
I Voice coil current
U Voltage induced in the voice coil
B Flux density in the air gap
l Effective length of the voice coil wire
Bl Force factor
F Lorentz force acting on the voice coil
V Velocity of the voice coil
kt Total spring constant
mt Total moving mass, without air load mass
Rm Mechanical damping
Rd Electrical damping = (Bl)2/Re
Rt Total damping = Rr + Rm + Rd
Zrad Mechanical radiation impedance = Rr + jXr

The driver is characterized by a cone or piston of area

S = πa2, (1.30)

and various other parameters, which will be introduced successively, and are summarized
in Table 1.2. The resonance frequency f0 is given by

kt = (2πf0)
2 m, (1.31)

where m is the total moving mass (which includes the air load), kt is the total spring
constant of the system, including the loudspeaker and possibly its enclosing cabinet of
volume V0. This cabinet exerts a restoring force on the piston with equivalent spring
constant

kB = γP0 S2

V0
= ρc2 S2

V0
, (1.32)

where γ is the ratio of the specific heats (1.4 for air), P0 is the atmospheric pressure, ρ,
the density of the medium, and c, the speed of sound. The current i(t) taken by the driver
when driven with a voltage v(t) will be given by equating that voltage to the voice coil
resistance Re and the induced voltage

v(t) = i(t)Re + Bl
dx

dt
+ Le

di

dt
(1.33)

where Bl is the force factor (which will be explained later on), x is the piston displace-
ment, and Le the self-inductance of the voice coil. The term in dx/dt is the voltage
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induced by the driver piston velocity of motion. Using the Laplace transform, Eqn. 1.33
can be written as

V (s) = I (s)Re + BlsX(s)+ LesI (s), (1.34)

where capitals are used for the Laplace-transformed variables, and s is the Laplace vari-
able, which can be replaced by iω for stationary harmonic signals. The relation between
the mechanical forces and the electrical driving force is given by

m
d2x

dt2 + Rm
dx

dt
+ ktx = Bli, (1.35)

where at the left-hand side, we have the mechanical forces, which are the inertial reaction
of the cone with mass m, the mechanical resistance Rm, and the total spring force with
total spring constant kt; at the right-hand side, we have the external electromagnetic
Lorentz force F = Bli acting on the voice coil, with B, the flux density in the air gap, i,
the voice coil current, and l being the effective length of the voice coil wire. Combining
Eqns. 1.34 and 1.35, we get

X(s)

[
s2 m+ s(Rm + (Bl)2

Les + Re
+ kt

]
= BlV (s)

Les + Re
. (1.36)

We see that besides the mechanical damping Rm, we also get an electrical damping term
(Bl)2/(Les + Re), and this term plays an important role. If we ignore the inductance of
the loudspeaker, the effect of eddy currents5 induced in the pole structure (Vanderkooy
[283]), and the effect of creep6, we can write Eqn. 1.36 as the transfer function Hx(s)

between voltage and excursion

Hx(s) = X(s)

V (s)
= Bl/Re

s2 m+ s(R + (Bl)2/Re)+ kt
. (1.37)

We use an infinite baffle to mount the piston, and in the compact-source regime (a/r �
c/(ωa)) the far-field acoustic pressure p(t) a distance r away becomes

p(t) = ρS( d2x/ dt2)/(2πr), (1.38)

proportional to the volume acceleration of the source (Morse and Ingard [180], Kinsler
et al. [142]). In the Laplace domain, we have

P(s) = s2ρSX(s)/(2πr). (1.39)

5
Owing to the eddy current losses in the voice coil, the voice coil does not behave as an ideal coil, but it can

be modelled very well by means of Le = L0(1− jα), where α is in the order of magnitude of 0.5.
6

With a voltage or current step as the input, the displacement would be expected to reach its steady-state value
in a fraction of a second, according to the traditional model. The displacement may, however, continue to increase.
This phenomenon is called creep. Creep is due the viscoelastic effects (Knudsen and Jensen [145], Flügge [74])
of the spring (spider) and edge of the loudspeaker’s suspension.
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Figure 1.11 Lumped-element model of the impedance-type analogy of an electrody-
namic loudspeaker preceded by an LC high-pass crossover filter, which is not part of the
actual model. The coupling between the electrical and mechanical parts is represented by
a gyrator. The system parameters are given in Table 1.2, from Aarts [4]

Using Eqn. 1.39 and neglecting the self-inductance Le, we can write Eqn. 1.36 as the
transfer function from excursion to pressure

Hp(s) = X(s)

P (s)
= s2ρS/(2πr)Bl/Re

s2 m+ s(R + (Bl)2/Re)+ kt
. (1.40)

Using Eqns. 1.33 and 1.34, we can make the so-called lumped-element model as shown
in Fig. 1.11, which behaves as a simple second-order mass-spring system. We have, for
harmonic signals,

F = (Rm + iωmt + kt

iω
+ Zrad)V . (1.41)

With the aid of Eqn. 1.41 and the properties of the gyrator as shown in Fig. 1.11, the
electrical impedance of the loudspeaker (without Xr, which is the imaginary part of the
mechanical radiation impedance7) can be calculated as follows

Zin = Re + iωLe + (Bl)2

(Rm + Rr)+ iωmt + kt/(iω)
. (1.42)

Using the following relations

Qm = √
ktmt/Rm, Qe = Re

√
ktmt/(Bl)2,

Qr = √
ktmt/Rr, ω0 = √

kt/mt,

ν = ω/ω0 − ω0/ω, τe = Le/Re,

Qmr = QmQr/(Qm +Qr),

(1.43)

7
For ω � ωt (defined in Eq. 1.49) Xr/ω can be taken into account in mt.
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Figure 1.12 Real (dashed line) and imaginary (solid line) parts of the normalized radi-
ation impedance of a rigid disk with a radius a in an infinite baffle

we can write Zin as

Zin = Re

[
1+ iωτe + Qmr/Qe

1+ iQmrν

]
, (1.44)

if we neglect Le, we get at the resonance frequency (ν = 0) the maximal input impedance

Zin(ω = ω0) = Re(1+Qmr/Qe) ≈ Re + (Bl)2/Rm. (1.45)

The time-averaged electrical power Pe delivered to the driver is then

Pe = 0.5|I |2�{Zin} = 0.5|I |2Re

[
1+ Qmr/Qe

1+Q2
mrν

2

]
. (1.46)

The radiation impedance of a plane-circular rigid piston8 with a radius a in an infinite
baffle can be derived as (Morse and Ingard [180, p. 384])

Zrad = πa2ρc[1− 2J1(2 ka)/(2 ka)+ i2H1(2 ka)/(2 ka)], (1.47)

where H1 is a Struve function (Abramowitz and Stegun [12, 12.1.7]), J1 is a Bessel
function and k is the wave number ω/c. The real and imaginary parts of Zrad are plotted
in Fig. 1.12.

8
The radiation impedance of rigid cones and that of rigid domes is studied in, for example, Suzuki and Tichy

[259, 260]. They appeared to be significantly different with respect to rigid pistons for ka > 1, revealing that Zrad
for convex domes is generally lower than that for pistons and higher than that for concave domes.
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Zrad can be approximated as

Zrad ≈
{

πa2ρc[(ka)2/2+ i8 ka/(3π)], ω � ωt

πa2ρc[1+ i2/(πka)], ω � ωt,
(1.48)

where

ωt = 1.4 c/a (1.49)

is the transition frequency (−3 dB point). A full-range approximation of H1 is given in
Sec. 1.3.3.2 and in Aarts and Janssen [9]. However, for low frequencies, we can either
neglect the damping influence of Zrad, or use

�{Zrad} ≈ a4f 2/4, (1.50)

which follows immediately from Eqn. 1.48. The real part of Zrad is qualitatively depicted
in Fig. 1.9, but more precisely in Fig. 1.12. The time-averaged acoustically radiated power
can then be calculated as follows

Pa = 0.5|V |2�{Zrad}, (1.51)

and with the aid of Eqns. 1.41–1.51 as follows

Pa = 0.5(Bl/(Rm + Rr))
2I 2Rr

1+Q2
mrν

2
, (1.52)

as depicted in Fig. 1.9, which clearly shows the bandwidth limitation similar to a bandpass
filter. The acoustic pressure in the far field at distance r and azimuth angle θ is

p(r, t) = i
fρ0 V πa2

r

[
J1(ka sin θ)

ka sin θ

]
eiω(t−r/c), (1.53)

assuming an axis of symmetry at θ = 0 rad, where V is the velocity of the piston (Beranek
[28], Kinsler et al. [142]), and J1 is a Bessel function, see Sec. 1.3.3.1. Assuming a
velocity profile as depicted in Fig. 1.9, we can calculate the magnitude of the on-axis
response (θ = 0). This is also depicted in Fig. 1.9, which shows a ‘flat’ SPL for ω � ω0.
However, owing to the term in square brackets in Eq. 1.53, the off-axis pressure response
(θ �= 0) decreases with increasing ka. This yields an upper frequency limit for the acoustic
power, together with the mechanical lower frequency limit ω0, and is the reason why a
practical loudspeaker system needs more than one driver (a multi-way system) to handle
the whole audible frequency range.

The power efficiency can be calculated as follows

η(ν) = Pa/Pe = [QeQr(ν
2 + 1/Q2

mr)+Qr/Qmr]
−1. (1.54)
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In Fig. 4.13, some plots for η(ν) for various drivers are shown. For low frequencies9, so
that Qmr ≈ Qm, the efficiency can be approximated as

η(ν) = Pa/Pe ≈ [Qr{Qe(ν
2 + 1/Q2

m)+ 1/Qm}]−1. (1.55)

A convenient way to relate the sound pressure level Lp to the power efficiency η is the
following. For a plain wave, we have the relation between sound intensity I and sound
pressure p

I = p2

ρc
, (1.56)

and the acoustical power is equal to

Pa = 2πr2I (1.57)

or

Pa = 2πr2p2

ρc
. (1.58)

Using the above relations, we get

Lp = 20 log

(√
Paρc

2πr2
/p0

)
, (1.59)

where we assume radiation into one hemifield (solid angle of 2π), that is, we only account
for the pressure at one side of the cone, which is mounted in an infinite baffle. For r = 1 m,
ρ = 415, Pa = 1 W, and p0 = 20 10−6, we get

Lp = 112+ log η . (1.60)

If η = 1 (in this case Pa = Pe = 1 W), we get the maximum attainable Lp of 112 dB.
Equation 1.60 can also be used to calculate η if Lp is known, for example, by
measurement.

1.3.3 BESSEL AND STRUVE FUNCTIONS

Bessel and Struve functions occur in many places in physics and quite prominently in
acoustics for impedance calculations. The problem of the rigid-piston radiator mounted
in an infinite baffle has been studied widely for tutorial as well as for practical reasons,
see for example, Greenspan [98], Pierce [208], Kinsler et al. [142], Beranek [28], Morse
and Ingard [180]. The resulting theory is commonly applied to model a loudspeaker in
the audio-frequency range. For a baffled piston, the ratio of the force amplitude to the

9
It should be noted that Qr depends on ω, but using Eqns. 1.43 and 1.48 for ω � ωt, we can approximate

Qr ≈ 2 c
√

ktmt/(πa4ρω2).
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normal velocity amplitude, which is called the piston mechanical radiation impedance, is
given by

Zm = −i
ωρ

2π

∫ ∫ ∫ ∫
R−1eikR dxs dys dx dy. (1.61)

Here R =
√

(x − xs)2 + (y − ys)2 is the distance between any two points, (xs, ys) and
(x, y), on the surface of the piston. The integration limits are such that (xs, ys) and
(x, y) are within the area of the piston. The four-fold integral in Eqn. 1.61, known as the
Helmholtz integral, was solved by Rayleigh [219, 302] and further elaborated in Pierce
[208], with the result

Zm = ρcπa2[R1(2 ka)− iX1(2 ka)], (1.62)

where

R1(2 ka) = 1− 2 J1(2 ka)

2 ka
(1.63)

and

X1(2 ka) = 2H1(2 ka)

2 ka
(1.64)

are the real and imaginary parts of the radiation impedance, respectively. In Eqns. 1.63
and 1.64, J1 is the first-order Bessel function of the first kind (Abramowitz and Stegun
[12, 9.1.21]), and H1(z) is the Struve function of the first kind (Abramowitz and Stegun
[12, 12.1.6]). Bessel functions are solutions to the homogeneous Bessel equation

z2y
′′ + zy′ + (z2 − ν2)y = 0, (1.65)

where a particular kind of solution Jn is discussed in Sec. 1.3.3.1. Struve functions are
solutions to the inhomogeneous Bessel equation

z2y
′′ + zy′ + (z2 − ν2)y = 4(z/2)ν+1

√
π (ν + 1/2)

, (1.66)

and are discussed in Sec. 1.3.3.2;  is the gamma function. Also, some useful formulas
for Bessel and Struve functions are given and an effective and simple approximation of
H1(z), which is valid for all z (from Aarts and Janssen [9]).

1.3.3.1 Bessel Functions J n(z)

The Bessel function of order n can be represented (Abramowitz and Stegun [12, 9.1.21])
by the integral

Jn(z) = 1

π

∫ π

0
cos(z sin θ − nθ) dθ, (1.67)
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Figure 1.13 Plot of Bessel functions J0(x) (dashed), and J1(x) (solid)

and is plotted in Fig. 1.13 for n = 0, 1. There is the power series expansion (Abramowitz
and Stegun [12, 9.1.10])

Jn(z) =
( z

2

)n
∞∑

k=0

(−z2

4

)k

k! (n+ k + 1)
, (1.68)

which yields

J0(z) = 1−
1
4z2

(1!)2
+
(

1
4z2
)2

(2!)2
−
(

1
4z2
)3

(3!)2
+ · · · , (1.69)

and

J1(z) = z

2
− z3

16
+ z5

384
− z7

18 432
+ · · · . (1.70)

For the purpose of numerical computation, these series are only useful for small values
of z. For small values of z, Eqns. 1.63 and 1.70 yield

R1(ka) ≈ (ka)2

2
, (1.71)

where we have substituted ka = z; this is in agreement with the small ka approximation
as can be found in the references given earlier, see also Fig. 1.12. Furthermore, there is
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the asymptotic result (Abramowitz and Stegun [12, 9.2.1 with ν = 1]), see Fig. 1.13,

J1(z) =
√

2

πz
(cos(z − 3π/4)+O(1/z)) , z →∞, (1.72)

but this is only useful for large values of z. Equation 1.63 and the first term of Equation 1.72
yield for large values of z (again substituting ka)

R1(ka) ≈ 1, (1.73)

which is in agreement with the large ka approximation, as can be found in the given
references as well. The function Jn(x) is tabulated in many books (see e.g. Abramowitz
and Stegun [12]), and many approximation formulas exist (see e.g. Abramowitz and
Stegun [12, 9.4]). Another method to evaluate Jn is to use the following recurrent relation

Jn−1(x)+ Jn+1(x) = 2n

x
Jn(x), (1.74)

provided that n < x, otherwise severe accumulation of rounding errors will occur
(Abramowitz and Stegun [12, 9.12]). However, Jn(x) is always a decreasing function
of n when n > x, so the recurrence can always be carried out in the direction of decreas-
ing n. The iteration is started with an arbitrary value zero for Jn, and unity for Jn−1. We
normalize the results by using the equation

J0(x)+ 2J2(x)+ 2J4(x)+ · · · = 1. (1.75)

A heuristic formula to determine the value of m to start the recurrence with Jm = 1 and
Jm−1 = 0 is (�·� indicates rounding to the nearest integer)

m =
⌈

6+max(n, p)+ 9p
p+2

2

⌋

p = 3x

2
. (1.76)

1.3.3.2 The Struve Function H1(z)

The first-order Struve function H1(z) is defined as

H1(z) = 2z

π

∫ 1

0

√
1− t2 sin zt dt (1.77)

and is plotted in Fig. 1.14. There is the power series expansion (Abramowitz and Stegun
[12, 12.1.5])

H1(z) = 2

π

[
z2

123
− z4

12325
+ z6

1232527
− · · ·

]
. (1.78)
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Figure 1.14 Plot of Struve function H1(x)

For the purpose of numerical computation, this series is only useful for small values
of z. Eqns. 1.64 and 1.78 yield, for small values of z (substituting ka for z)

X1(ka) ≈ 8 ka

3π
, (1.79)

which is in agreement with the small ka approximation as can be found in the references
given earlier, see also Fig. 1.12. Furthermore, there is the asymptotic result (Abramowitz
and Stegun [12, 12.1.31, 9.2.2 with ν = 1]).

H1(z) = 2

π
−
√

2

πz
(cos(z − π/4)+O(1/z)) , z →∞, (1.80)

but this is only useful for large values of z. Eqn. 1.64 and the first term of Eqn. 1.80
yield for large values of ka

X1(ka) ≈ 2

πka
, (1.81)

which is in agreement with the large ka approximation, as can also be found in the earlier
given references. An approximation for all values of ka was developed by Aarts and
Janssen [9]. Here, only a limited number of elementary functions is involved:

H1(z) ≈ 2

π
− J0(z)+

(
16

π
− 5

)
sin z

z
+
(

12− 36

π

)
1− cos z

z2
. (1.82)

The approximation error is small and decently spread out over the whole z-range, vanishes
for z = 0, and its maximum value is about 0.005. Replacing H1(z) in Fig. 1.12 by the
approximation in Eqn. 1.82 would result in no visible change. The maximum relative
error appears to be less than 1%, equals 0.1% at z = 0, and decays to zero for z →∞.
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1.3.3.3 Example

A prime example of the use of the radiation impedance is for the calculation of the
radiated acoustic power of a circular piston in an infinite baffle. This is an accurate model
for a loudspeaker with radius a mounted in a large cabinet (Beranek [28]). The radiated
acoustic power is equal to

Pa = 0.5|V |2�{Zm}, (1.83)

where V is the velocity of the loudspeaker’s cone. The use of the just-obtained approx-
imation for H1 is to calculate the loudspeaker’s electrical input impedance Zin, which
is a function of Zm (see Beranek [28]). Using Zin, the time-averaged electrical power
delivered to the loudspeaker is calculated as

Pe = 0.5|I |2�{Zin}, (1.84)

where I is the current fed into the loudspeaker. Finally, the efficiency of a loudspeaker,
defined as

η(ka) = Pa/Pe, (1.85)

can be calculated. These techniques are used in Chapter 4 when analyzing the behavior
of loudspeakers with special drivers.

1.4 AUDITORY PERCEPTION

This section reviews the basic concepts of the auditory system and auditory perception,
insofar as they relate to BWE methods that will be discussed in later chapters. The
treatment here is necessarily concise, but there are numerous references provided for
further reading, if necessary or desired. Reviews of psychoacoustics can be found in, for
example, Moore [177, 178], Yost et al. [302]; physiology of the peripheral hearing system
is discussed in, for example, Geisler [86].

1.4.1 PHYSICAL CHARACTERISTICS OF THE PERIPHERAL HEARING SYSTEM

The peripheral hearing system consists of outer, middle, and inner ear, see Fig. 1.15.
Sound first enters via the pinna, which has an irregular shape that filters impinging sound
waves. This feature aids in sound localization, which is not further discussed here (see
e.g. Batteau [26], Blauert [34]). Next, sound passes into the auditory canal and on to
the eardrum, or tympanic membrane, which transmits vibrations in the air to the three
middle ear bones, the ossicles (malleus, incus, and stapes). The stapes connects to the oval
window, the entrance to the fluid-filled cochlea. The system from tympanic membrane to
oval window serves as an impedance-matching device so that a large portion of sound
energy at the frequencies of interest, in the air, is transmitted into the cochlea. Muscles
connect the malleus and stapes to the bone of the skull, and contraction of these muscles
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Figure 1.15 Sketch of the peripheral part of the hearing system, showing outer (pinna,
auditory canal, eardrum), middle (malleus, incus, stapes), and inner ear (cochlea)

can be used to attenuate high-level sounds (primarily low frequency). Pressure equalization
in the middle ear is achieved through the Eustachian tube, which connects the middle ear
cavity to the throat.

The cochlea is a spiral-shaped cavity in the bone of the skull, filled with cerebro-spinal
fluid; a cross section in shown in Fig. 1.16. The cochlea is wide at the oval window
(the base) and narrows towards the other extreme (the apex). It is divided into three
parts by the basilar membrane (BM) and Reisner’s membrane; from top to bottom are
the scala vestibuli, scala media, and scala tympani. The scala vestibuli and scala tympani
are connected at the apex. Vibrations of the oval window are transmitted as a travelling
wave through the cochlea, and also vibrate the BM. Locations on the BM have a very
sharp frequency tuning because the variation in mechanical properties lead to different
resonant frequencies at each location; the sharp frequency tuning is also achieved by active
processes occurring within the cochlea. Between the BM and the tectorial membrane, in
the organ of Corti, are rows of hair cells (outer hair cells and inner hair cells) with
attached stereocilia. These oscillate along with the BM motion, which finally leads to a
neural response from the inner hair cells. This response is propagated through the auditory
nerve onto the cochlear nucleus and subsequent neural processing centres. There is also a
descending pathway, from the brain to the outer hair cells, but this is not further discussed
here.
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Figure 1.16 Cross section of the cochlea, showing the various membranes and cavities,
and the organ of Corti. The hair cells are supported between the organ of Corti and
the tectorial membrane, to which they are attached by stereocilia. The movement of the
stereocilia, in response to sound entering the ear, causes a neural response, carried to the
brain by the auditory nerve

The mechanical properties of the BM vary across the length of the cochlea: the BM
is widest and has the lowest compliance at the apex, thereby causing each portion of the
BM to respond maximally to a specific frequency (this is somewhat dependent on signal
level). High-frequency sound vibrates the BM near the base, and low-frequency sound
near the apex. These features were first elucidated by the investigations of the Nobel prize
winner, Georg von Békésy [290]. The ordering of frequencies from low to high along
the spatial extent of the BM is known as a tonotopic organization. The relation of the
position y (distance in cm from the stapes, range approximately from 0–3.5 cm) of the
maximum peak amplitude can be well approximated by

f = 2.5× 104−0.72y, (1.86)
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Figure 1.17 Peak displacement amplitude of the BM in response to pure tones of various
frequencies

for frequencies f below 200 Hz. Below this frequency, a pattern is produced, which
extends all along the basilar membrane, but reaches a maximum before the end of the
membrane. Figure 1.17 illustrates for pure tones of various frequencies the peak displace-
ment amplitude along the BM. The response of neurons along the BM generated by the
BM motion is qualitatively similar; this neural response is called the excitation pattern.

1.4.2 NON-LINEARITY OF THE BASILAR MEMBRANE RESPONSE

An essential aspect of the cochlear response is that it is non-linear. Therefore, the shape
of the graphs in Fig. 1.17 change somewhat, depending on the level of the stimulus. Also,
the BM motion (BMM) is strongly compressed at moderate signal levels. This makes it
possible for a normal ear to have a useable dynamic range of about 120 dB, while the
variation in BMM is much smaller. It is thought that the outer hair cells (OHC) are largely
responsible for this non-linear behavior.

An interesting consequence of this non-linearity is that if two tones are presented
to the ear at sufficient sound pressure level, distortion products will be generated in
the cochlea. These distortion products are also called combination tones (CT), see for
example, Goldstein [91], Smoorenburg [253], Zwicker [307]. Assuming that the input
frequencies are f1 and f2, CTs will appear at frequencies

f (n) = (n+ 1)f1 − nf2, fn > 0. (1.87)
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These combination tones are audible and, as we shall see in Chapter 2, may serve a useful
purpose for certain kinds of BWE applications. The cubic CT (n = 1) is usually largest
in amplitude, and is relatively independent of frequency, being about 15–20 dB below the
level of each component of the two-tone complex (assumed identical). However, this is
only true if f1/f2 ≈ 1.1, that is, for closely spaced components. For a ratio f1/f2 = 1.4,
the level of the cubic CT drops to about 40 dB below the level of the components in the
two-tone stimulus.

Another distortion product is the difference tone (DT) f2−f1 (Goldstein [91]). The DT
level does not depend very much on the ratio f1/f2, but varies greatly with the level of
the two-tone complex. The DT is barely audible at 50 dB and maintains a level of about
50 dB below the level of the components of the two-tone complex. If f1 = 2f2, the DT
and the cubic CT will coincide.

1.4.3 FREQUENCY SELECTIVITY AND AUDITORY FILTERS

It was just shown how the BMM (and correspondingly, the excitation pattern) varies in
position, depending on the frequency of a pure tone (Fig. 1.17). When considering a fixed
position on the BM, we can use the excitation patterns of pure tones to determine the
frequency response of the excitation pattern at that position. One then obtains a filter for
each position on the BM; the resulting filters are called auditory filters. These describe how
a position on the BM responds to pure tones of various frequencies. Important parameters
of these filters are:

• Characteristic frequency (CF): This is the frequency (in Hz) of a pure tone, which
yields the maximum response, and is also given (approximately) by Eqn. 1.86.

• Equivalent rectangular bandwidth (ERB): This is the bandwidth (in Hz) of a rectangular
filter having a passband amplitude equal to the maximum response of the auditory filter,
that passes the same power of a white noise signal. A small ERB implies a narrow
filter, and hence high frequency selectivity. Instead of ERB, sometimes a measure of
tuning, Q, is used, to specify frequency selectivity. It is defined as Q = CF/�f ,
where �f is some measure of bandwidth, usually the −3-dB bandwidth. Large Q

values imply high frequency selectivity.

A relation describing ERB as a function of frequency f is given by (Glasberg and
Moore [89])

ERB(f ) = 24.7(4.37× 10−3f + 1). (1.88)

Different experimenters have sometimes found different values for the bandwidth of audi-
tory filters, and there is thus no universally agreed-upon value; the equation given here for
auditory filter bandwidth is a widely used version. It is noted, however, that the original
measurement of auditory filter bandwidth by Fletcher [72] yielded smaller bandwidths
(Fletcher used the concept of ‘critical band’ analogously to the ERB as just described);
recent experiments (Shera et al. [247]; Oxenham and Shera [195]) using novel techniques
for measuring auditory filter bandwidth seem to agree better with Fletcher’s original
results than with Eqn. 1.88.
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A commonly used model for auditory filter shape is by means of the gammatone filter
(Patterson et al. [204], Hohman [110]) gt(t)

gt(t) = atn−1e−2πb·ERB(fc)t cos(2πfct+φ). (1.89)

Here a, b, n, fc, and φ are parameters and ERB(fc) is as given in Eqn. 1.88. The gam-
matone filters are often used in auditory models (e.g. AIM; see Sec. 1.4.8) to simulate
the spectral analysis performed by the BM.

The frequency selectivity of the auditory filters is thought to have a large influence
on many auditory tasks, such as understanding speech in noise or detecting small timbre
differences between sounds. For BWE applications, another interesting aspect of auditory
filters is their presumed influence on pitch perception, discussed in Sec. 1.4.5. For the
moment, we mention that depending on the ERB of an auditory filter, it may pass one
or more harmonics of a complex tone, also depending on the fundamental frequency
of that tone. It turns out that roughly up to harmonic number 10, auditory filters pass
only one harmonic, that is, these harmonics are spectrally resolved . At higher harmonic
numbers, the ERB of the auditory filters become wider than the harmonic frequency
spacing, and therefore the auditory filters pass two or more harmonics. These harmonics
are thus spectrally unresolved, and the output of the auditory filter is a superposition of
a number of these higher harmonics. Whether a harmonic is resolved or not will have
a large influence on the subsequently generated neural response. In the following, we
will alternately use the terms harmonic and partial, both referring to one component of a
harmonically related complex tone.

1.4.4 LOUDNESS AND MASKING

1.4.4.1 Definitions

Loudness is related to the level, or amplitude, of a sound, but depends in a complicated
manner on level and also frequency content. The following definitions are used by the
ISO [117]

Definition 4 Loudness: That attribute of auditory sensation in terms of which sounds may
be ordered on a scale extending from soft to loud. Loudness is expressed in sone, where
one sone is the loudness of a sound, whose loudness level is 40 phon.

Definition 5 Loudness level: Of a given sound, the sound pressure level of a reference
sound, consisting of a sinusoidal plane progressive wave of frequency 1 kHz coming from
directly in front of the listener, which is judged by otologically normal persons to be equally
loud to the given sound. Loudness level is expressed in phon.

Definition 6 Critical bandwidth: The widest frequency band within which the loudness of
a band of continuously distributed random noise of constant band sound pressure level is
independent of its bandwidth.

Note that the critical bandwidth so defined is intimately related to the ERB of the auditory
filters (Eqn. 1.88) and also Fletcher’s critical band.
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Figure 1.18 Normal equal-loudness level contours for pure tones (binaural free-field
listening, frontal incidence. Data from ISO 226-1987(E) [117, Fig. 1]. MAF indicates
minimum audible field, the just-noticeable sound pressure level

The threshold of audibility is the minimum perceptible free-field listening intensity
level of a tone that can be detected at each frequency over the entire range of the ear.
The average threshold of audibility for the normal ear is shown as the curve labeled MAF
(minimum audible field) in Fig. 1.18; the other curves show the equal-loudness contours
at various phon levels. The frequency of maximum sensitivity is near 4 kHz. Below
this frequency, the threshold rises to about 70 dB. For high frequencies, the threshold
rises rapidly, which also strongly depends on age, as is shown in Fig. 1.19. This has
some implication for high-frequency BWE methods, as will be discussed in Chapters 6
and 5. Elderly listeners might, on average, not benefit as much (or at all) from processing
strategies that increase high-frequency content of audio signals. The curves are also level
dependent, especially at low frequencies, where they are compressed; this is illustrated in
Fig. 1.20, which shows the normalized difference between the 80-phon contour and the
20-, 40-, 60-, and 100-phon contours. The compression of the equal-loudness contours at
low frequencies implies that small changes in SPL lead to large changes in loudness.

1.4.4.2 Scaling of Loudness

Several experimenters have made contributions to the scaling of loudness. The earliest
published work seems to be that credited to Richardson and Ross [224], who required an
observer to rate one of two tones of different intensities, which he heard as a certain mul-
tiple or fraction of the other. Since then, various methods of evaluating loudness of com-
plex sounds from objective spectrum analysis have been proposed. The earliest attempt
to use algebraic models in psychophysical measurement is probably that of Fletcher and
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Figure 1.21 Increasing loudness (solid curve) versus bandwidth of white noise, while
the dB(A) Level (dashed line) was kept constant. From Aarts [4]

Munson [73]. However, there is still much interest in this subject, and nowadays there are
two standardized procedures for calculating loudness levels. The first is based on a method
developed by Stevens [256], hereafter referred to as method 532A and the second one,
532B, by Zwicker [305, 310]. A-weighting is a widely used method, traditionally applied
in sound level meters to measure the loudness of signals or to determine the annoyance
of noise. It is based on an early 40-phon contour and is a rough approximation of a fre-
quency weighting of the human auditory system. However, considerable differences are
ascertained between subjective loudness ratings and the A-weighted measurements. For
example, the loudness of noise increases when the dB(A) level is kept constant and the
bandwidth of the noise is increased. As depicted in Fig. 1.21, with increasing bandwidth
the loudness has increased from 60 to 74 phon (solid curve), while the dB(A) level (dashed
line) was kept constant. The effect has been studied by Brittain [39], and is a striking
example that for wideband signals the A-weighted method is generally too simple. As
another example, consider the loudness of a tone of 200 Hz, 2000 Hz, or both combined,
as in Fig. 1.22 (a, b, and c, respectively). Each part shows four dB values: the top value
is that computed by a loudness model (ISO532B, to be discussed hereafter), the second
and third by A- and B-weighting respectively, and the last value is the acoustic SPL.
B-weighting is obtained by approximating the inverse of the 80-phon contour. Note that
the A-weighting underestimates the perceived loudness for the 200-Hz tone and also for
the combination. The B-weighting works better for the 200-Hz tone. Neither weighting
procedure works for the combination, though.

The sone scale The loudness level is expressed in phon. However, loudness values
expressed on this scale do not immediately suggest the actual magnitude of the sensation.
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Therefore the sone scale, which is the numerical assignment of the strength of a sound,
has been established. It has been obtained through subjective magnitude estimation using
listeners with normal hearing. As a result of numerous experiments (Scharf [231]), the
following expression has evolved to calculate the loudness S of a 1-kHz tone in sone:

S = 0.01× (p − p0)
0.6 (1.90)

where p0 = 45 µPa approximates the effective threshold of audibility and p is the sound
pressure in µPa. For values p � p0, Eqn. 1.90 can be approximated by the well-known
expression

S = 2(P−40)/10 (1.91)

or

P = 40+ 10 log2 S (1.92)

where P is the loudness in phon.

ISO532A and 532B The ISO532A method is equal to the Mark VI version as described
in Stevens [256]. However, Stevens refined the method, resulting in the Mark VII version
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[257], which is not standardized. Here, the 532A method is discussed briefly. The SPL
of each one-third octave band is converted into a loudness index using a table based on
subjective measurements. The total loudness in sone S is then calculated by means of the
equation

S = Sm + F
(∑

Si − Sm

)
(1.93)

where Sm is the greatest of the loudness indices and
∑

Si is the sum of the loudness
indices of all the bands. For one-third octave bands the value of F is 0.15, for one-half
octave bands it is 0.2, and for octave bands it is 0.3.

An early version of the ISO532B method is described in Zwicker [305] and later it has
been refined, see for example, Zwicker and Feldtkeller [311], Paulus and Zwicker [205],
and Zwicker [308]. The essential steps of the procedure are as follows. The sound spectrum
measured in one-third octave bands is converted to bands with bandwidth roughly equal
to critical bands. Each critical band is subdivided into bands of 0.1 Bark (which is an
alternate measure of auditory filter bandwidth) wide. The SPL in each critical band is
converted, by means of a table, into a loudness index for each of its sub-bands. In order
to incorporate masking effects, contributions are also made to higher bands. The total
loudness is finally calculated by integrating the loudness indices over all the sub-bands,
resulting in the loudness in sone. The total loudness may be converted into loudness level
in phon using Eqn. 1.92 (of course this can also be done for loudness as computed using
method 532A).

Zwicker’s method is elegant because of its compatibility with the accepted models of
the human ear, whereas Stevens’ method is based on a heuristic approach. Zwicker’s
procedure tends to give values systematically larger than Stevens’.

Time-varying loudness model The main drawback of both Stevens’ and Zwicker’s loud-
ness models is that they are, in principle, only valid for stationary signals. This would
seriously limit their applicability, but fortunately both models seem to correlate quite
well with subjective judgements, even for realistic time-varying signals, see Sec. 1.4.4.4.
Nonetheless, Glasberg and Moore [90] devised a method to predict loudness for time-
varying sounds, building on the earlier models. The time-varying model was designed
to predict known subjective data for stationary sounds, amplitude-modulated sounds, and
short-duration (<100 ms) sounds. Broadly speaking, Glasberg and Moore’s model is sim-
ilar to Zwicker’s, but loudness is temporally integrated to account for the time-varying
nature of the signals. Specifically, the momentary excitation pattern generated by the
sound at a specific time is used to compute the excitation pattern, and from this the
‘instantaneous’ loudness. This quantity is not consciously observable, but might corre-
spond to total activity in the auditory nerve, for example. The instantaneous loudness is
then ‘smoothed’ to obtain the short-term loudness, with a relatively fast attack and slower
decay time. The short-term loudness is observable, for example, as would be perceiv-
able for a 10-Hz amplitude-modulated signal. The short-term loudness is smoothed again,
with larger time constants, to obtain the ‘long-term’ loudness. The long-term loudness
corresponds to the overall loudness percept of the signal.
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The model seems appropriate for use with audio signals, which are always time varying.
The main limitation the authors mention is the fact that the relative phases of harmonics
are not taken into account; the crest factor (peak-to-rms ratio) of waveforms on the BM can
differ substantially for complex tones with identical power spectra but different phases,
which may lead to loudness differences. This might be of some importance for BWE
applications, where in some cases the harmonic structure of signals is modified. However,
in practice, relative phases of harmonics are unpredictable, because of the randomizing
effect of room reflections (unless the distance to the speaker is very small such that
reflections are small compared with direct sound, or with headphone presentation).

1.4.4.3 Sensitivity to Changes in Intensity

Sensitivity to changes in intensity can be measured in several different ways, which mostly
give similar trends. Results are usually expressed as the smallest detectable increment,
or just-noticeable difference (JND), �I of a sound with intensity I , expressed as �L =
10 log([I + �I ]/I). For wideband noise, �L ≈ 0.5–1.0 dB over most of the dynamic
range of the auditory system. Thus, �I/I ≈ 0.13–0.25; this ratio is called the Weber
fraction. A constant Weber fraction implies that sensitivity to changes in the stimulus is
proportional to the magnitude of the stimulus; this property is known as Weber’s law.
Weber’s law does not hold for pure tones, where it has been found that sensitivity increases
with increasing intensity. Much work has been done to explain how intensity variations
are coded by the auditory system, and how to explain the intensity versus loudness curves
for various signals, but no definite theory exists as yet; Moore [178] presents a review.
Allen and Neely [19] present a model that does account for the intensity JND of pure
tones and wideband noise, on the basis of the assumption that the intensity JND is related
to the variance of an internal loudness variable.

1.4.4.4 Loudness Issues for Listening Tests

Although the BWE algorithms to be discussed later can be analyzed in objective ways, the
ultimate quality test is of course through subjective experiments. For this, not only is the
quality of the algorithms important but, perhaps, also the quality of the loudspeaker. The
perceived sound quality of a loudspeaker and its relation to its various physical properties
have been a subject of discussion and research for a long time, see for example, Toole
[272, 273, 274, 275], Gabrielsson and Lindström [82], Tannaka and Koshikawa [263].
In this regard, it is important that reproduction levels are chosen appropriately for the
various signals tested, in particular, if different loudspeakers are used in the same test.
Although normally one would prefer to use the same experimental hardware throughout
one listening test, there are situations where this is not desirable. For example, to evaluate
certain low-frequency enhancement algorithms (discussed in Chapter 2), one might want
to subjectively compare a processed signal reproduced on a flat-panel loudspeaker with
an unprocessed signal on a high-quality electrodynamic loudspeaker. Loudness matching
across loudspeakers is especially important as it is well known that a higher reproduction
level, or loudness level, of a loudspeaker can lead to a higher appreciation score than
that of another one of the same quality, or even the same loudspeaker. The importance of
equal-loudness levels of the sounds being compared is shown by a striking investigation of
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Illényi and Korpássy [116]. They found that the rank order of the loudspeakers, according
to the subjective quality judgements, was in good agreement with the rank order obtained
by the corresponding calculated loudness.

In Aarts [4], it was found that the ISO 532B method was the most suitable of the
two ISO methods to adjust interloudness levels of loudspeakers, while the simple B-
weighting gave the most satisfactory results of all the tested methods (both ISO and
A–D weightings). The widely used A-weighting gave poor results, though (see related
comments in Sec. 1.4.4.2). It was also found that loudness levels were hardly influenced
by the choice of the repertoire, more specifically that a varied repertoire, on average,
sounds equally loud, as was computed for pink noise. This considerably facilitates the
computation of appropriate loudness levels if multiple loudspeakers are used.

1.4.4.5 Masking

Masking is defined by the American Standards Association as [20]

Definition 7 The process, and amount, by which the threshold of audibility for one sound
is raised by the presence of another (masking) sound. The unit customarily used is the
decibel.

Masking and frequency selectivity are intimately related; it has been known for a long
time that a sound is masked most easily by another sound that has similar frequency
components (Wegel and Lane [295]). In fact, Fletcher [72] assumed, in his studies of
the critical bandwidth, that masking is only possible if the masker and masked signal
(maskee) fall within the same critical band, even though it was known that masking is
possible at greater frequency separations.

For BWE applications, masking may be of interest to consider the audibility of distortion
components, which are generated by some of the algorithms, which is a form of tone-
on-tone masking. This kind of masking is known as energetic, simultaneous masking.
Energetic masking refers to the fact that the detection threshold is determined by the
power spectra of masker and maskee (power spectrum model of masking); masking that
cannot be explained by the power spectrum model is informational masking. It is thought
that this involves higher-level (attentional) processes. Simultaneous masking refers to the
fact that masker and maskee occur at the same time; masking is also possible if the masker
precedes the maskee (forward masking), or if the maskee precedes the masker (backward
masking). Both informational and non-simultaneous masking do not seem very relevant
for BWE applications.

Masking effects have not generally been studied in relation to BWE methods; it might
have some use in connection with audibility of distortion components that some of the
algorithms generate. The energy of these unwanted components can be analyzed and
compared with respect to the energy of desired frequency components, and quantified as
a kind of ‘signal-to-noise’ ratio. This is then used to assess the performance of various
algorithms; see for example, Sec. 2.3.2.1, and following sections, for such analysis. How-
ever, this ‘signal-to-noise’ ratio is a purely physical description that does not factor in
any perceptual effects, such as masking. This implies that conclusions thus reached are
to be considered with some caution. A better modelling of BWE performance could be
achieved if masking effects were also considered.
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1.4.5 PITCH

1.4.5.1 Factors Influencing Pitch

According to the American Standards Association [20] pitch is defined as follows

Definition 8 Pitch: that attribute of an auditory sensation in terms of which sounds may
be ordered on a scale extending from low to high.

According to Moore [177], there are various ways how the pitch of a pure tone depends on
its frequency. One can obtain a pitch–frequency relation by various methods, the classical
result being the mel scale. It has an arbitrary pitch reference of 1000 mel at a frequency
of 1000 Hz. A tone that sounds, on average, twice as high receives a value of 2000 mel,
whereas a tone that sounds only half as high has a pitch of 500 mel. Although the mel
scale suggests that the pitch of a pure tone is simply determined by its frequency, the
perceived pitch also depends on some other factors, one of them being the intensity. If one
measures for a group of subjects how, on average, the pitch of a pure tone changes with the
tone’s intensity, one typically finds that (1) for tones below 1000 Hz the pitch decreases
with increasing intensity (about 15%), (2) for tones between 1000 and 2000 Hz the pitch
remains rather constant, and (3) for tones above 2000 Hz the pitch rises with increasing
intensity (about 20%). This effect varies considerably between listeners and also depends
on the duration of the tone. Hartmann [105] found that the pitch of short-duration tones
(≈100 ms) with decaying envelopes is higher than the frequency of the tone. The upward
pitch shift seems to increase with decreasing frequency, being 2.6% at a frequency of
412 Hz (the lowest frequency used by Hartmann). The shift at even lower frequencies
could be considerably higher, although there is no data to support this hypothesis.

For a complex tone, consisting of more than one frequency component, the situation
is more complicated. Pitch should then be measured by psychophysical experiments. A
pitch that is produced by a set of frequency components, rather than by a single sinusoid,
is called a residue. Even if in a harmonic complex the fundamental frequency is missing,
it will still be perceived as a residue pitch, which in this case is sometimes called virtual
pitch, because the frequency corresponding to the pitch is absent. There is a vast literature
on pitch perception and residue pitch. Some of the earlier systematic investigations are
described in Bilsen and Ritsma [33], de Boer [58], Houtsma and Goldstein [113], and
Schouten [239, 240]). The fact that low-order harmonics need not be physically present to
evoke a pitch percept at the fundamental10 is an attractive option to enhance low-pitched
sounds reproduced by (small) loudspeakers; in Chapter 2, we shall see how this can be
exploited. One factor that remains unclear is the strength of the residue pitch at very
low frequencies (<100 or 200 Hz); most investigators have looked at higher frequencies.
Ritsma [225, 226] has studied the existence region above 200 Hz.

Repetition pitch Some noise-like sounds do evoke pitch sensations. An example was
described by Huygens [115] in the seventeenth century. He noticed that the noise of a
water fountain, reflected by marble stairs, produced a distinct musical pitch equal to that
of an organ pipe whose length matched the depth of the stairs. He essentially discovered

10
In fact, the residue pitch can be heard even if there is a masking noise present in the frequency region of the

fundamental such that it would normally be masked (Licklider [161]).
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that when one or more consistently delayed images of a sound interfere with the original
sound, one hears a pitch that corresponds to the inverse of the delay. The original sound
can be noise, music, speech, or just about any other sound. Because the frequency response
characteristic of such a time-delay system has a periodic comb-like structure, this process
is often referred to as comb filtering (Boff et al. [232], Bilsen [32]).

Special cases However, the clearest pitch sensations are evoked by sounds that are
periodic or, equivalently, sounds that have line spectra of harmonically related frequen-
cies. Most string and wind instruments produce near-periodic sounds and are therefore
very efficient in conveying pitch information. Other instruments, such as bells or chimes
produce line spectra with inharmonically related frequencies that evoke the ambiguous
sensations, characteristic of these instruments. Still other instruments, such as the snare
drum or cymbals, produce sounds with continuous spectra that evoke a sensation of noise
without any pitch. Accordingly, these are instruments used for rhythmic rather than for
melodic or harmonic purposes. Other pitch phenomena are edge pitch (Small and Daniloff
[251], Kohlrausch and Houtsma [146]) – which refers to a weak pitch sensation evoked
by low-pass or high-pass filtering noise with a sufficiently sharp spectral edge; adaptation
pitch (Zwicker [306]) is heard when one is exposed to wideband noise with a spectral
notch of about half an octave. A weak tonal afterimage is heard when the tone is abruptly
switched off.

1.4.5.2 Sensitivity to Changes in Frequency

Sensitivity to changes in stimulus frequency is remarkably high for pure tones of mod-
erate frequency. Around 500–1000 Hz, the difference limen for frequency (DLF) is about
0.2–0.3% (Sek and Moore [244]); this means that two pure tones differing in frequency
by the DLF will be correctly discriminated 75% of the time (or some other threshold). At
low and high frequencies the DLF increases, and above 4–5 kHz the DLF exceeds 1%.
Also, for short-duration tones (<100 ms) the DLF increases, being roughly 5 times larger
than the values quoted previously for tones of 6.25 ms duration (Moore [176]).

Sensitivity to a modulation in frequency, the frequency modulation difference limen
(FMDL), is less frequency dependent. The FMDL is about 0.5–1% over most of the audi-
ble frequency range. The FMDL seems the more suitable value to use when considering
if frequency differences will be perceived in continuous musical or speech sounds.

One can also study the detectability of deviations from a perfect harmonic relationship
between partials in a complex tone, see for example, Moore et al. [179]. In Le Goff et al.
[158], experiments were performed to study the effect of mistuning only the fundamental
component in a harmonic complex tone. Subjects had to distinguish the complex tone
with its lowest harmonic at the fundamental frequency from a complex with the lowest
harmonic shifted in frequency. Thresholds were determined for fundamental frequencies
of 60 and 100 Hz. Complexes had either a flat spectrum, or components were generated
with a spectral slope of −5 or −10 dB/octave. Conditions with the second or both the
second and third harmonic omitted from the complex were also included. In additional
conditions, the complex was slowly amplitude modulated and/or presented with a simul-
taneous distracting sound. The results showed a range of detectability from better than
0.5 to 7%, depending on the various conditions. Presenting the sound with a spectral
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slope strongly lowers thresholds. Adding a distractor or applying amplitude modulation,
both lead to higher thresholds. The aim of this study was to investigate the perceptual
consequences of a special frequency mapping technique, that is used to exploit the high
efficiency of a loudspeaker design (trading high efficiency at the resonance frequency for
decreased efficiency at higher frequencies), described in Sec. 4.3. The more complex stim-
uli used in the subjective experiment were thought to mimic signals that would typically
be reproduced through this special driver.

1.4.5.3 Pitch Theories

A number of theories have been developed to explain the pitch of complex tones, which
led to what are now known as the place and periodicity theories of pitch perception.
Among these are the early theories of Ohm [190] and Seebeck [243]. Others, including
Helmholtz [108], assumed that if the fundamental frequency of a harmonic stimulus
was absent, non-linear distortion in the middle ear could recreate that fundamental as a
difference tone.

Place theories of pitch perception Briefly, the place theory of pitch perception assumes
that the cochlea performs a spectral analysis of the sound and maps different frequency
components along the BM (tonotopic organization, see Sec. 1.4.1); then the various loca-
tions where spectrally resolved partials are detected are used to derive a pitch percept.
This implies that tones without resolved partials have no definite pitch. Several models
for such pitch extraction have been put forward, some of which are:

• Closest matching subharmonic of lowest partial (Walliser [293]): The first step is to
determine the stimulus envelope repetition rate; this corresponds to the frequency dif-
ference of the partials. Next, a subharmonic of the lowest partial is determined that is
closest to the frequency found in the first step.

• Most frequently occurring subharmonic: Terhardt [266] elaborated upon Walliser’s
model, and assumed that each partial elicits a number of subharmonics that are pitch
‘candidates’. For a complex tone, there will be one subharmonic that occurs most fre-
quently, which determines the perceived pitch. Ambiguous pitch percepts are possible
if several candidate subharmonics have roughly equal number of occurrences or if
subharmonics cluster around multiple values.

• Optimum processor (Goldstein [92]): The estimated frequency values of the partials are
fed into a kind of pattern recognition device, which first estimates the corresponding
harmonic numbers and then derives the best-matching subharmonic to fit the observed
partials; that subharmonic will be the perceived pitch. This model explains ambiguous
pitch percepts by assuming that errors can be made in the estimation of harmonic
number.

It is noted that in all of these models the use of place information is not an absolute
requirement. The frequencies of the partials could be derived through timing information.

These models predict pitch values not only for ‘normal’ complex tones, but also for
complex tones where each partial is shifted in frequency by a fixed amount, creating
an inharmonic complex that does not have a ‘proper’ fundamental frequency. Although
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Figure 1.23 Predicted pitch percepts according to models of Walliser (a), Terhardt (b),
and Goldstein (c), given a complex tone with partials at 1830, 2030, and 2230 Hz. The
three arrows displayed in each part indicate frequencies at which subjects report pitch
values; the pitch at 203 Hz is most strong, but percepts also occur at 184 and 226 Hz.
Walliser’s model gives only a single pitch prediction; Terhardt’s computes subharmonics
of the partials and predicts pitches for frequencies where subharmonics (nearly) coincide;
Golstein’s finds best-matching subharmonics for the observed partials. The amplitudes of
the three predicted pitches in Goldstein’s model are scaled proportionally to the inverse
minimum mean-square error of that pitch value with reference to the observed partials;
the sum of amplitudes equals 1, such that individual amplitudes can be interpreted as
probabilities

such a shift does not alter the frequency spacing of the partials, the perceived pitch
does shift. Schouten [240] found that a complex consisting of frequencies 1830, 2030,
and 2230 Hz elicits a pitch of about 203 Hz; additionally, pitch matches around 184
and 226 Hz are also obtained. We investigate what pitch predictions the three pitch
models will yield, with illustration thereof in Fig. 1.23. Fig. 1.23 (a) shows that the
prediction by Walliser’s model correctly finds a pitch of 203 Hz; it fails, however, to
predict the alternate pitch values. Note that in all three parts the three arrows at frequen-
cies 184, 203, and 226 Hz indicate the subjectively obtained pitch matches. Terhardt’s
model, shown in Fig. 1.23 (b), finds the most likely pitch at 203 Hz, because the
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subharmonics cluster most closely around that value. Pitch matches at 184 and 226 Hz
are also correctly obtained, but with less likelihood, as the clustering is not as tight
around these values. Fig. 1.23 (c) shows predictions from Goldstein’s model. In this
case, the amplitudes of the pitch matches indicate the probability of subjectively find-
ing that particular pitch on any given occasion. For this, we have used an ad hoc metric
that relates the probability of a pitch match to the inverse of the minimum mean-square
error for that pitch match, given the observed harmonics. Goldstein’s model also cor-
rectly matches the 203-Hz pitch, by assuming the harmonic numbers to be 9, 10, and
11; if the harmonic numbers are overestimated by 1, the pitch match at 184 Hz is pre-
dicted, and if the harmonic numbers are underestimated by 1, the pitch match at 226 Hz
is predicted. Note that the pitch ambiguity that is observed in this example is primarily
due to the absence of lower harmonics, which, if present, would give far less ambiguous
predictions in either Terhardt’s or Goldtein’s model. This is also subjectively observed,
and, in fact, it is believed that low-order harmonics (number ≈3–6) are dominant with
respect to pitch determination, even if the fundamental is physically present (Plomp [209],
Ritsma [227]).

Periodicity theories of pitch perception In the periodicity, or temporal, theory the loca-
tions of the BM that are excited are not important (although the tonotopic organization
of the cochlea per se is not disputed); rather, periodicities in neural activity are used to
derive pitch information. Periodicities in neural activity are caused by the fact that neu-
ral response occurs preferentially during a specific phase of the BMM waveform (phase
locking). The original temporal theory is mainly due to Schouten [239], who devised
an ingenious theory that combined peripheral frequency analysis and central periodicity
detection. According to his theory, the lower components of a harmonic complex are
spectrally resolved in the cochlea (see Sec. 1.4.3) and each map into their own pitch.
The higher components, which are not resolved, create a periodic interference pattern that
reflects the periodicity of the waveform. This periodicity is detected by higher neural cen-
ters and maps into a sensation of (fundamental) pitch. This gave rise to the term residue
pitch, because, according to Schouten, it results from the residue of spectral components
that the cochlea fails to resolve (Boff et al. [232]). The actual pitch that is assigned to the
sound is that pitch to which attention is mainly drawn; for complex tones this is generally
the residue pitch. Note that the temporal theory can also account for ambiguous pitch of
inharmonically related partials, as in the example of Fig. 1.23.

Numerous experiments have shown support for both theories. It appears that neither
theory alone can account for all conditions, and as such it seems likely that both place
and timing information can and are used for pitch perception. Moore [177] presents a
qualitative model that incorporates both place and timing information and can account
for all experimental data.

1.4.6 TIMBRE

Timbre is defined by the American Standards Association [20] as follows.

Definition 9 Timbre: that attribute of an auditory sensation in terms of which a listener
can judge that two sounds similarly presented and having the same loudness and pitch are
dissimilar.
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This is, as has also been noted by others, a better description of what timbre is not than
what it is. It is problematic to define exactly what timbre is because it does not appear to be
a one-dimensional quantity. Timbre is known to depend on short-term power spectrum (or
more properly, the excitation pattern), amplitude envelope (in particular, attack and decay
time), and phase spectrum. Plomp and Steeneken [210] carried out a clever experiment
to investigate the relative influence of power spectrum versus phase spectrum on timbre.
They used signals s(t) of the form

s(t) =
N∑

n=1

an sin(2πf0t)+ bn cos(2πf0t), (1.94)

and found (using triadic comparisons and multidimensional scaling) that the largest timbral
difference occurred between signals where all an (or bn) were zero and signals where the
an and bn were alternately zero. They proceeded to investigate what changes in power
spectrum would yield the same magnitude of timbral difference as was found for the
phase effect. The an and bn were chosen to decay by a fixed amount in dB per octave,
varied between −4.5 and −7.5 dB, in 0.5-dB steps. The maximum influence of phase
spectrum as discussed above could be matched by a change in the power spectrum slope
of 2 dB, at f0 = 146.2 Hz. The influence of phase spectrum decreases for increasing
f0, being matched by a 0.7-dB change in the power spectrum slope for f0 = 584.4 Hz.
Also, it appeared that phase spectrum and power spectrum influences were independent
of one another. In conclusion, this experiment showed that phase spectrum does influence
timbre, but less so than the power spectrum. In practice, when listening to signals over
loudspeakers, the relative phases of frequency components become randomized because of
room reflections, which means that the signal’s original phase spectrum will be modified.
It thus appears that it is not practical to try to control the phase spectrum, unless listening
occurs via headphones. In BWE algorithms, timbre can thus be adjusted by modifying
harmonic amplitudes, for example, through filtering.

Timbre of a sound is usually qualitatively described using several descriptors. One
such descriptor that seems to be well linked to an objective parameter of the signal is
‘brightness’; it is related to the relative amount of high frequencies versus low frequencies
contained in the signal. Brightness can be quantatively described by the spectral centroid
CS , or power spectral center of gravity, as

CS =
∫

f 10 log S2(f ) df∫
10 log S2(f ) df

, (1.95)

given a signal with power spectrum11 S2(f ). If, for example,, the relative amplitudes
of the harmonics of a complex tone are modified (as most of the BWE algorithms do),
CS will change, while the pitch remains the same. Equation 1.95 is only a first-order
approximation of what the spectral centre of gravity is for the internal representation of

11
It is more proper to use a compressed power spectrum (e.g. by taking the cube root), which corresponds better

to the BMM. For simplicity, we keep using S(f ) in the remainder of the book. It should be noted that if spectral
centroid is quantatively used for analysis purposes, a perceptually much more accurate version must be employed.
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the signal; refinements can be made that incorporate knowledge of auditory processing,
but that is beyond the scope of this chapter.

The temporal envelope, in particular, attack and decay time, has a large influence on
timbre, but as BWE algorithms do not greatly modify the temporal structure of signals,
we do not need to consider this in depth.

1.4.7 AUDITORY SCENE ANALYSIS

Auditory scene analysis (ASA) is a relatively new area of interest, but has experienced
increasing attention since Bregman’s [38] seminal book. Bregman defines ASA as the
study of how the auditory system uses sensory information to form a mental representation
of the world around us. The task of forming such a representation can be subdivided
into many sub-tasks: how many sound sources are present, which frequency components
belong together, what is the relative positioning of the sound sources? The relevance
of such questions for BWE is that BWE algorithms typically take one part of an audio
signal, process it, and add it back to the other part. After the final addition of signals,
the auditory system should perceive the result as deriving from one sound source. This
is not an academic problem; for instance, a short time delay between the onsets of two
frequency bands of a signal can be enough to perceptually separate the two bands. We
will introduce some terminology here and discuss a few of the relevant ASA principles
that are thought to be important for BWE applications, following Bregman [38].

Bregman uses the following concepts:

• (Auditory) stream: Perceptual grouping of the parts of the neural spectrogram that go
together; the perceptual unit that represents a single happening. A stream can consist
of more than one sound, for example, a soprano singing with a piano accompaniment.

• Grouping : Formation of a stream from separate sensory elements. Grouping can occur
across time (sequential integration) and across frequency (simultaneous integration).
The opposite of grouping is segregation, where two or more streams are formed from
the sensory elements.

• Belongingness: A sensory element has to belong to a stream.
• Exclusive allocation: A sensory element can only belong to one stream; it can not be

used in more than one description at the same time.
• Closure: Perceived continuity of a stream even if the sensory elements are interrupted.

For closure to occur, it is necessary that the interruption is ‘plausible’. In hearing, a
plausible interruption could be masking noise, whereas a mere silent gap would not
constitute a plausible interruption, and thus would not yield a continuous stream.

As explained above, BWE algorithms could potentially create two streams if an audio
signal is not processed properly; in that case, the processed part appears segregated from
the unprocessed part. Because this concerns the grouping of simultaneous frequency com-
ponents, we will investigate the factors influencing simultaneous integration and how they
might apply to BWE processing. Sequential integration is of less concern, as BWE pro-
cessing does not alter the temporal structure of the processed signal, and thus should not
influence grouping along the temporal dimension.
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Factors influencing simultaneous integration are:

• Correspondence over time: If a complex spectrum consists, in part, of a simpler spec-
trum that was present previously, the simple spectrum would appear to continue. The
‘difference’ spectrum would appear as a new tone (‘old-plus-new’ heuristic).

• Harmonicity : Components with a harmonic frequency relationship are grouped, and
assigned a fundamental pitch.

• Common fate: Components that have correlated changes in frequency (frequency modu-
lation, FM) or amplitude (amplitude modulation, AM) are grouped. Naturally produced
speech and music sounds often exhibit micromodulation (slight modulations on small
time scales) as well as modulations on a larger time scale. An extreme example of
amplitude modulation is an onset or offset. The common AM during an onset is an
especially strong grouping cue.

• Spatial direction: Components arriving from the same direction are grouped; in con-
trast, components arriving from different directions are segregated. This cue can be
quite strong, although it can be acoustically ambiguous, which is why it breaks down
easily if in conflict with any of the other factors mentioned earlier.

The tendency for simultaneous frequency components to group depends on how many
of the factors mentioned here favor grouping versus segregation. The various factors
reinforce each other, and grouping (or segregation) will be strongest if many or all of the
factors are in ‘agreement’.

For BWE applications, harmonicity and common fate principles seem of greatest impor-
tance. Music and speech signals abound with harmonic signals (although noise-like sig-
nals also occur), and this harmonic structure should be maintained as much as possible.
Some of the BWE algorithms actively produce harmonics of input signal components,
which promotes grouping. Because the production of harmonics occurs through non-linear
processing, inharmonic (distortion) components can, in some cases, also be generated.
Depending on the relative energy of harmonic versus distortion products, the distortion
will be audible. The distortion will covary in amplitude with the harmonic components,
and may therefore be grouped into the same stream. Of course, perceptible distortion
should be avoided as much as possible, regardless of grouping or segregation. Another
important result is that the processed signals should not be excessively delayed with
respect to the unprocessed signal: the common fate principle implies that the delayed
onset of the processed signal could segregate it from the unprocessed signal. Zera and
Green [304] found that in some cases, delays on the order of milliseconds can lead to
discriminable changes in perception (though this does not necessarily imply segregation).
This will be discussed in more detail in Sec. 2.3.3.3, and solutions will be given to avoid
such potential problems.

1.4.8 PERCEPTUAL MODELLING – AUDITORY IMAGE MODEL

The auditory image model (AIM) can be used to visualize internal representations (‘audi-
tory images’) of sounds, and is described elaborately in Patterson et al. [203, 202]. Both
functional and physiological modules can be selected that model the use of fine-grain
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Figure 1.24 AIM calculation for a complex tone with f0 = 200 Hz and a decaying har-
monic spectrum (waveform shown in upper panel). The main panel displays the auditory
image, as a function of time lag (ordinate) and frequency (abscissa), and is explained in
the text. The lower panel is obtained by collapsing the auditory image over frequency,
giving a lag-domain representation. The largest peak occurring at a lag of 5 ms indicates
the perceived pitch at 200 Hz. The right panel is obtained by collapsing the auditory image
over the lags, giving a frequency-domain representation. This clearly shows the harmonic
structure of the signal, and also shows that low harmonics are better resolved than higher
harmonics

timing information by the auditory system. In the following chapters, we will use AIM
as a tool for predicting pitch percepts of complex tones.

The MatLab version of AIM was used (AIM-MAT); in all calculations, the functional
(instead of physiological) modules of the package were used. The following processing
stages are included:

• Middle ear filtering : The filtering described in Glasberg and Moore [90] is used.
• Spectral analysis: Here the response on the BM is computed in terms of BMM. The

gammatone auditory filters (Eqn. 1.89 in Sec. 1.4.3) are used for this purpose.
• Neural encoding : First, there is a global compression of the BMM to allow a large

dynamic range of sounds to be processed, as also occurs in the auditory system. Second,
there is fast-acting expansion of the larger peaks in the compressed BMM response,
which serves to enhance these presumably more important peaks. The last stage is a
two-dimensional (over time and frequency) adaptive thresholding that serves to sharpen
the resulting neural activity pattern (NAP).
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• Time-interval stabilization: Because periodic sounds give rise to static, rather than
oscillating, percepts, it is assumed that a temporal integration is performed on the
NAP. To preserve the fine structure present in the timing of the NAP, a so-called
‘strobed’ temporal integration occurs. The integration commences when a peak in the
NAP is encountered, after which the NAP input to the integrator decays in time.

The result of these processing steps is the auditory image, an example of which is shown
in Fig. 1.24, where a complex tone with a 200-Hz fundamental was used. The auditory
image can be collapsed over the time lags, to obtain an internal spectral representation
of the signal (right panel of Fig. 1.24). Alternatively, a collapse over frequency provides
a temporal representation of the signal (lower panel). Owing to the nature of the strobed
temporal integration, this temporal representation is interpreted as a lag with respect to
the last strobe: repetitions in the NAP show up as peaks in the auditory image at the
appropriate lag values. Therefore, a signal with a temporal periodicity will exhibit peaks
in the auditory image, which occur at a lag value equal to the periodicity interval; thereby
predicting a pitch percept for the given signal at a frequency, which is the inverse of the
lag. In Fig. 1.24, we find that the largest peak in the lag domain occurs at 5 ms, as we
would expect on the basis of the 200-Hz fundamental frequency. We interpret the pitch
strength as corresponding to the width of the peak, with wider peaks corresponding to the
weaker pitch. If multiple peaks occur, the likelihood of pitch matches corresponds to the
relative height of peaks. On the other hand, multiple peaks could indicate that the given
signal segregates into two (or more) streams, each with their own pitch. As AIM does
not incorporate auditory scene analysis principles, it does not predict which of these two
possibilities applies to the given signal.





2
Psychoacoustic Bandwidth
Extension for Low Frequencies

2.1 INTRODUCTION

All loudspeakers have a limited frequency range in which they can radiate sound energy
at a more or less uniform level. The radiated sound pressure level can be expressed as
a function of frequency through the loudspeaker’s magnitude response (usually specified
for an on-axis measurement). Hi-Fi enthusiasts know that a flat frequency response is
very desirable, and it has been shown that the degree of ‘flatness’ correlates well with
perceived quality (Gabrielsson and Lindström [82], Toole [274, 275]). Another desirable
feature is that this frequency response is maintained for off-axis radiation, but we will not
be concerned with loudspeaker directivity. Whether the loudspeaker’s response is flat or
not, at low and high frequencies the efficiency always decreases, leading to a low (fl) and
high cut-off frequency (fh), usually defined as those frequencies in which the response
falls 3 dB below the response at some intermediate reference frequency. Focusing on
the low-frequency cut-off point, we can easily derive how the loudspeaker parameters
influence its value. By rewriting the expressions derived in Sec. 1.3, we find that the
efficiency η in the normal operating range, and fl, are given by

η ∼
(

S

m

)2

, (2.1)

fl = 1

2π

√
kt

m
, (2.2)

fl being determined by the resonance frequency (usually denoted as f0) of the mass-spring
system that the loudspeaker is. A high efficiency η necessitates a large cone area S; a low
fl requires a low compliance kt (‘total’ compliance: combined suspension and cabinet
influence) and/or a large mass m. A low total compliance would necessitate a large cab-
inet volume; but a large mass greatly decreases the efficiency. For example, to lower the
cut-off frequency of an octave by quadrupling the mass, the efficiency would decrease by
a factor of 16 (12 dB). Such a measure is not in line with good loudspeaker design (high
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voltage sensitivity and high power efficiency). For small loudspeakers, in particular, the
situation is troublesome: a small cone area, a small mass, and a high compliance lead to
high values for the low-frequency cut-off point, and low efficiency. We have already found
that lowering fl by increasing m is not a viable option; also, lowering kt is not feasible
because it would necessitate a large cabinet volume (which contradicts the loudspeaker
being small). The fundamental problem is that good low-frequency sound reproduction
requires a large volume velocity, which is very hard to achieve for a small loudspeaker.
Beyond this problem of physical origin, the perception of low-frequency sound (lower
than, say, 100 Hz) is markedly worse than for intermediate frequencies (see Fig. 1.18).
This means that to reproduce a low-frequency tone at equal sensation level relative to a
higher frequency tone, the SPL will have to be higher. Some typical loudspeaker responses
are shown in Fig. 4.13.

Nevertheless, in many applications, small loudspeakers are unavoidable, because of
size and/or cost constraints. In fact, loudspeakers that are large enough to reproduce the
lowest audible frequencies (around 20 Hz) at a sufficient level are huge in size and very
expensive. Even a more modest goal of good reproduction at 50 Hz is difficult to achieve
within the constraints usually encountered in consumer electronics, such as (flat) TV and
laptop computers, and also (portable) audio and (in-ear) headphones. Another challenging
case is in telephony, in which very small loudspeakers are employed.

The need for higher acoustic output has always existed, especially at low frequencies,
ever since the invention of the electrodynamic loudspeaker. Improvements in loudspeaker
design have yielded better low-frequency characteristics, the most popular option being
vented designs. The vent introduces an additional resonance below the loudspeaker –
cabinet resonance, thus extending the low-frequency response. The drawback is that
the response falls off twice as fast below the new cut-off frequency, and the tempo-
ral behaviour is degraded. Even though this ‘bass-reflex’ design has a more extended
low-frequency response than a conventional loudspeaker and cabinet, Eqns. 2.1–2.2 still
hold. As mentioned previously, the fundamental problem is the limited volume velocity
that is achievable with a small loudspeaker, and the physical limit cannot be overcome
with purely physical modifications of the design. A partial solution to the low-frequency
problem has come from BWE and the psychology of hearing. The material presented in
this chapter will explain how BWE can be used to improve the bass response of small
loudspeakers, and basic algorithms are presented. First, however, we discuss the tradi-
tional option of low-frequency emphasis by linear amplification of the bass portion (‘bass
boosting’).

The loudspeaker response can theoretically be inverted using a preceding filter with
the inverse of this response, as in Fig. 2.1. In practice, the limiting factors are finite cone
excursion and finite power-handling capacity of the loudspeaker. Therefore, this method
can only enhance frequencies at or slightly below fl (BWE methods can enhance repro-
duction several octaves below fl). At high output levels, distortion or even damage and
ultimately destruction of the loudspeaker may occur. Also, this solution is very energy
inefficient, because of the loudspeaker’s intrinsic low efficiency at low frequencies (impor-
tant for portable devices such as portable audio, cd players, or PDAs). The advantages of
this approach are its simplicity and linearity.

Another solution was proposed by Long and Wickersham [164] (‘ELF’ system). The
design specifically drives the loudspeaker below its resonance frequency, by using two
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H−1
Out

Figure 2.1 A simple circuit for ‘inverting’ a loudspeaker response. The signal is filtered
by H−1, the ‘inverse’ of the loudspeaker response, scaled and applied to the loudspeaker.
Usually the filtering does not use the real inverse of the loudspeaker response, but simply
a low-pass filter to boost low-frequency sounds. The subsequent scaling may be manually
adjustable or signal dependent

integrators preceding the loudspeaker terminals. The integrators invert the high-pass
characteristic of the loudspeaker, and the method is said to work better than ‘tradi-
tional’ amplification. But again, cone excursion and inefficiency are concerns for such
an approach.

2.2 PSYCHOACOUSTIC EFFECTS FOR LOW-FREQUENCY
ENHANCEMENT OF SMALL LOUDSPEAKER
REPRODUCTION

Given the fact that on physical grounds it is impossible to have a good low-frequency
loudspeaker response (with small loudspeakers), it is pertinent to ask whether other options
are available. One option is to use BWE, with the ‘extension’ taking part in the auditory
system, instead of extending the actual physical bandwidth of the signal. In fact, we
sometimes have to reduce the bandwidth of the signal to prevent very low frequencies
from entering the loudspeaker, as these cannot be reproduced anyway. If we modify the
low-frequency part of the signal in such a way that the auditory system ‘fills in’ the part
that the loudspeaker cannot reproduce, then we have achieved psychoacoustic BWE.

2.2.1 PITCH (HARMONIC STRUCTURE)

There are a number of psychoacoustic effects that can possibly be used for this kind
of BWE, shown in Fig. 2.2. As before, fl represents the low-frequency cut-off of the
loudspeaker. These options are:

• Frequency doubling : By a frequency doubling, we can shift components at frequency
f , for which fl/2 ≤ f ≤ fl, to frequency f ′, which is fl ≤ f ′ ≤ 2fl, as in panel (ii) of
Fig. 2.2. Because frequency components are now above fl, they can be reproduced at
a higher level, and since the audibility curve slopes downward at low frequencies, the
ear is more sensitive in this frequency range as well (Fig. 1.18). It may be expected
that the resulting signal will have an increased loudness in the low-frequency range.
Frequency doubling is attractive because of its extreme simplicity: a full-wave or half-
wave rectification suffices, which is trivial to implement in digital signal processing,
or in analog components. The drawback is that the waveform is seriously distorted,
and also, the pitch has changed.
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Figure 2.2 Panel (i) shows the frequency representation of a pure-tone signal at f0 Hz.
If f0 < fl, then the signal can be substituted by the following. Panel (ii): the double
frequency at 2f0; the pitch has changed, but the loudspeaker will reproduce the signal
more efficiently at 2f0. Panel (iii): components at 2f0 and 3f0, which will produce the
cubic combination tone, and the difference tone at high levels also , in the cochlea, at
f0. Panel (iv): components at 2f0, 3f0, 4f0 and so on, which will produce a residue
pitch at f0. In panels (iii) and (iv), the dashed arrows are not physically radiated by the
loudspeaker, but a pitch corresponding to that frequency is perceived

• Combination tones: As was explained in Sec. 1.4.2, non-linearities of the cochlear
response generate combination tones (CT) when presented with two-tone stimuli. If
pure tones with frequencies f1 and f2 enter the cochlea, the generated CT frequencies
f (n) correspond to those given in Eqn. 1.87. To elicit a low-frequency pitch at f0, we
need f0 = f (1) = 2f1 − f2; this corresponds to the cubic CT, which is highest in level
of all CTs. Probably the best option is to have f1 = 2f0 and f2 = 3f0. Although the
ratio f1/f2 = 1.5 is unfavourable (the level of the cubic CT at this ratio is very low),
at least these two components are harmonically related to f0. Some advantage might be
obtained because the difference tone (DT) (also described in Sec. 1.4.2) f2 − f1 now
coincides with the cubic CT, which might increase the loudness of the f0 component.
The frequencies are shown in panel (iii) of Fig. 2.2. Also, choosing f1 and f2 in the
manner described above will aid in the perception of virtual pitch, to be described next.

• Virtual pitch: Perhaps the most attractive option is to make use of the ‘missing funda-
mental’ effect: a special case of residue pitch, also known as virtual pitch. In Sec. 1.4.5,
it is shown how the auditory system creates a pitch percept at f0 if presented with
a harmonic series, that is, a tone complex of several frequency components, which
have a common fundamental frequency f0. For this, it is not necessary that the f0
component is actually present (nor the second, third, etc.).
For low-frequency psychoacoustic BWE applications, we can substitute an f < fl by
a series kf, k ≥ 2, to evoke the residue pitch of f , while the loudspeaker does not
radiate energy at frequency f . There are many non-linear operations that can be used to
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generate a harmonics series that will serve this purpose, as will be presented later in this
chapter. Note that at high sound pressure levels, residue pitch and distortion products
may occur simultaneously. The spectrum of a harmonic complex with fundamental at
f0 is shown in panel (iv) of Fig. 2.2.

Thus, there are three options to increase (apparent) bass reproduction below a loud-
speaker’s cut-off frequency. Note that the original low-frequency components below fl
can be either removed by appropriate filtering or retained.

2.2.2 TIMBRE (SPECTRAL ENVELOPE)

In addition to a correct pitch, the extended frequency components (harmonics of f0)
should have a timbre that is close to what would be perceived over an ideal loudspeaker.
In Sec. 1.4.6, it was discussed that timbre depends on magnitude spectrum more than on
phase spectrum, and the spectral centroid CS was introduced as an objective metric to
represent the subjective quality of ‘brightness’ of a sound.

For an analysis of low-frequency psychoacoustic BWE, we apply the simple wideband
formulation as in Eqn. 1.95 to compute the spectral centroid CS,0 for an input pure tone
of frequency f0 and amplitude a0 and the spectral centroid CS,1 for a synthetic signal
generated by BWE, that consists, say, of fundamental and harmonics 1–5 (as discussed
in Sec. 2.2.1), with amplitudes a0 . . . a5:

CS,0 = (f0a
2
0)/a2

0 = f0, (2.3)

CS,1 =
(

5∑
i=0

fia
2
i

)
/

5∑
i=0

a2
i = f0 ×

(
5∑

i=0

ia2
i

)
/
∑
i=0

a2
i = f0 × α, 1 ≤ α ≤ 6. (2.4)

The conclusion is that CS,0 �= CS,1∀α > 1, that is, the brightness of the input signal will
never be equal to the brightness of the output signal, unless all harmonic amplitudes are
zero. One can easily verify this by listening to the two above signals and concluding that
the pitch of both will always be equal, but the timbre will never be. We can deduce from
Eqn. 2.4 that the timbre of the harmonics signal will be closest to that of the pure-tone
input if the low-order harmonics are relatively larger in amplitude. In the limit that a0 � ai

(i = 1 . . . 5), the two timbres will be indistinguishable (neglecting other factors, which
may influence timbre, such as phase spectrum), but in that case, there is no bandwidth
extension taking place. In practice, this means that there has to be a compromise between
a large BWE effect (weakly decaying harmonics spectrum) and a good timbre match
(strongly decaying harmonics spectrum). How this compromise is achieved is discussed
later.

2.2.3 LOUDNESS (AMPLITUDE) AND TONE DURATION

After pitch and timbre, the last perceptual variable to control is loudness, measured
in phones (Sec. 1.4.4). To keep matters simple, we will only consider the influence of
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intensity and frequency on loudness here. For this, we refer to the equal-loudness contours
by Fletcher and Munson [73] (Fig. 1.18). For signals below about 500 Hz, we can state
that equal-intensity signals will sound louder if the frequency content is higher. For low-
frequency psychoacoustic BWE applications, this is a favourable circumstance, as the
algorithms typically replace low-frequency signals with higher harmonics. The equal-
loudness contours were measured for steady-state pure tones, so to assess the loudness
of time-varying complex signals (such as music or speech), it would be better to use
more sophisticated models, such as those by Stevens [257], Paulus and Zwicker [205],
Zwicker [310], or Glasberg and Moore [90] (discussed in Sec. 1.4.4.2). Using any of
these methods, we could compute the loudness of a pure-tone signal s0 of frequency f0
as perceived through a ‘perfect’ loudspeaker, as L(s0). We must also take into account
the other frequencies’ components present in the signal, which we represent by signal sm.
The loudness of the entire signal, perceived through a perfect loudspeaker, would then
be l0 = L(s0 + sm). BWE processing is applied to s0, which creates a signal s′0, and the
loudness of the total signal would be l′0 = L(gs′0 + sm), where s0 is scaled by factor
g. However, this signal is reproduced over a non-ideal loudspeaker that has an average
response of h′0 in the frequency region of s′0 and a response of 1 in the frequency region
of sm. Then the perceived loudness will be l′h = L(gh′0s

′
0 + sm). So, we should have

L(s0 + sm) = L(gh′0s
′
0 + sm). (2.5)

The increase in loudness �L that the processed signal would have relative to the unpro-
cessed signal, played over the same loudspeaker, would be

�L = L(gh′0s
′
0 + sm)− L(h0s0 + hmsm) ≈ L(gh′0s

′
0 + sm)− L(hmsm),

if h0s0 � hmsm; (2.6)

h0 is the loudspeaker response in the frequency region of s0, which, being below the
loudspeaker’s resonance frequency, is assumed to be negligible. Because L is a com-
plicated non-linear function, we cannot give a closed-form expression for g (Eqn. 2.5)
in terms of the other variables, nor for �L (Eqn. 2.6). This analysis does show us that
beside a model for L (loudness perception of complex tones), we also need to know the
characteristics of the loudspeaker, at least in the bass frequency range. A few attempts
have been made to create appropriate loudness models and algorithms for low-frequency
psychoacoustic BWE applications, which will be discussed in Sec. 2.3.4.

The frequency dependence of both the equal-loudness contours and the loudspeaker
response can also influence the perceived duration of tones. This will be illustrated with
respect to Fig. 2.3. A 50-Hz decaying tone is shown in part (a), as produced by, for
example, a bass drum. The amplitude of the signal is determined by the loudspeaker’s
response at 50 Hz. The dashed line indicates the minimum audible field at 50 Hz. The per-
ceived duration of the tone is indicated by the horizontal line, and equals T1 s. Say 50 Hz
lies below the cut-off frequency of the loudspeaker and a low-frequency psychoacoustic
BWE algorithm is applied to enhance the bass response, resulting in the signal shown
in the Fig. 2.3 (b). The BWE algorithm has created harmonics (say, 100 and 150 Hz) at
which frequencies the loudspeaker will be more efficient. This is shown by the increased
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Figure 2.3 (a) Shows a decaying signal at 50 Hz. The loudspeaker characteristics and
the minimum audible field at this frequency cause signals below the dashed line to be
inaudible; thus, the tone has a duration T1 of about 0.23 s. (b) Shows the signal with the
50-Hz component replaced by components at 100 and 150 Hz. The higher efficiency of
the loudspeaker and the lower value of the minimum audible field at these frequencies
cause the signal level where the tone becomes inaudible to be lower; thus, the tone has a
duration of T2 of about 0.34 s now

amplitude of the signal. As the equal-loudness contours slope downward at low frequen-
cies, the minimum audible field has decreased1. Together, these two effects increase the
perceived duration of the tone from T1 s to T2 s, in the given example from 0.23 to 0.34 s
(of course, the loudness of the tone also increases greatly). This increase in tone duration
can, for some repertoire, sound artificial. In fact, it merely shows that the BWE exten-
sion is doing its job well, as the same repertoire reproduced on a high-quality subwoofer
has the same long duration bass notes. The artificial aspect of the perception on a small
loudspeaker system with BWE is probably due to the fact that one does not expect good
bass reproduction for such systems.

Careful inspection of the equal-loudness contours will reveal that the spacing of the
contours is not constant. Rather, the contours are more ‘compressed’ for very low fre-
quencies than for higher frequencies, if we restrict our attention to the bass frequency
range. The consequence is that if we vary the level of two pure tones of unequal frequency
by the same amount, then the loudness variation of the two will be unequal. The lower

1
In most cases, the lowest audible intensity is not determined by the minimum audible field, but rather by

masking effects of ambient noise. Therefore, the increased sensitivity of the ear at higher frequencies would not
usually influence tone duration.
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frequency tone will appear to have the greater loudness variation. For low-frequency psy-
choacoustic BWE, this could imply that if very low-frequency components are replaced
by higher frequency components, loudness variations decrease. Gan et al. [83] have taken
this into account in their BWE algorithm, as will be discussed in Sec. 2.3.4.

2.3 LOW-FREQUENCY PSYCHOACOUSTIC BANDWIDTH
EXTENSION ALGORITHMS

2.3.1 OVERVIEW

We will discuss low-frequency psychoacoustic BWE algorithms using the general structure
shown in Fig. 2.4; compare this structure to the general BWE framework introduced in
Chapter I.3 as Fig. I.2. The implementation is in the time domain, which has the benefit
of computational efficiency. Frequency-domain algorithms would be possible, but suffer
the drawback that it would be difficult to achieve the desired frequency resolution while
at the same time keeping the analysis window sufficiently short to satisfy stationarity of
the input signal.

The essential element of the structure in Fig. 2.4 is the non-linear device (NLD), which
converts frequencies below the loudspeaker cut-off frequency fl to frequencies above fl.
The NLD will be chosen such that the pitch of the input signal is preserved, which will
be the case if the output frequencies are harmonically related to the input frequencies
(Sec. 2.2.1). In Sec. 2.3.2, we will present several options for the NLD. The filters FIL1
and FIL2, placed respectively before and after the NLD, serve two functions. FIL1 ensures
that only frequencies below fl enter the NLD; it is assumed that higher frequencies are
reproduced properly by the loudspeaker, and therefore should not be modified. The filter
characteristics therefore depend mainly on fl. FIL2 does the spectral envelope shaping
of the complex signal produced by the NLD. Its characteristics do not depend heavily
on the loudspeaker, but on the implementation of the NLD, in particular, the relative

xl

yr

yl

xr

FIL1

HFIL

HFIL

NLD FIL2 G

DELAY

DELAY

Figure 2.4 Overview of low-frequency psychoacoustic BWE in a time-domain algo-
rithm. The harmonics are generated by the non-linear device (NLD), with appropriate
filtering by FIL1 and FIL2. After scaling, the extended signal is added back to the input
signals, which is delayed and possibly high-pass filtered (HFIL)
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amplitudes of generated harmonics. FIL2 attempts to control the timbre of the synthetic
bass signal. In Sec. 2.3.3, we will go into more detail regarding the characteristics of
FIL1 and FIL2. Finally, the harmonics signal must be scaled such that an appropriate
loudness is achieved, after which it is added back to the input signal. The gain may be
fixed or, in more complex algorithms, adaptively determined by characteristics of the
input and output signals, as will be discussed in Sec. 2.3.4. The higher frequencies of
the input signals are usually passed straight through to the output, although a high-pass
filter (with cut-off frequency of approximately fl) may be applied to eliminate very low-
frequency components. The rationale for this is that these very low components are not
audible anyway (due to the poor loudspeaker response at those frequencies and the high
audibility threshold), but do contribute to cone excursion of the loudspeaker. By removing
these components, the cone excursion is decreased, which can be beneficial for the quality
of the reproduced signal.

The structure of Fig. 2.4 shows that for a stereo input signal, processing is done on
the summed input. This is because low-frequency content is usually identical in both
channels. Also, localization is quite poor at very low frequencies, wherefore the actual
distribution in left and right output channels is irrelevant.

2.3.2 NON-LINEAR DEVICE

The essential element of low-frequency psychoacoustic BWE algorithms is the non-linear
device (NLD), but non-linearity is a very general property, and there are many kinds
of non-linear functions. For any type of BWE, we usually require amplitude linearity,
such that the relation between input and output signals is independent of level. Thus, in
Vaidyanathan’s [278] terminology (see Sec. 1.1), we prefer NLDs to be homogeneous
systems. In this section, we review several NLD implementations that can be useful for
low-frequency psychoacoustic BWE.

In discussing the various NLDs and their characteristics, we shall make reference to
the auditory image model (Patterson et al. [203]) discussed in Sec. 1.4.8, which we use
to assess the pitch of complex tones.

2.3.2.1 Multiplier

Spectral characteristics Figure 2.5 shows an NLD whereby the input signal is repeat-
edly multiplied with itself, producing a harmonic series. Although this system is not
homogeneous, it has the advantage that one can control at the outset the number of har-
monics created, and their relative amplitudes. Because the output spectrum is under direct
control, a shaping filter (FIL2 in Fig. 2.4) is not necessary. The problem that this multi-
plying NLD is non-linear in amplitude can be solved by using an automatic gain control
(AGC) before the NLD, which will scale the signal level to a reference value. After the
NLD, the inverse gain will be applied to restore the signal to its original level. In this
way, the whole system has effectively become homogeneous.

We begin the analysis by assuming a pure-tone input signal x of frequency f0 at the
reference level (defined to be 1). Thus,

x(t) = sin(2πf0t). (2.7)
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Figure 2.5 Harmonics generation by multiplication. The input signal x is repeatedly
multiplied by itself to generate the harmonics. For a pure-tone input, the weights gi can
be chosen such that the output signal has a prespecified spectrum, according to Eqn. 2.11.
The example shown here generates four harmonics, but more or less numbers is also
possible

After multiplying a scaled x with a scaled replica, we get x2, as

x2(t) = g1g2

2
[1− cos(2× 2πf0t)]. (2.8)

The frequency doubling is apparent; g1, g2 are the scaling factors. If the heterodyning
option of Sec. 2.2.1 is chosen, the second harmonic is all we need and this concludes the
processing of the NLD (but in this case a more effective NLD is a rectifier, which will
be discussed later in this section). If, however, we propose to use the virtual pitch option
of Sec. 2.2.1, we will need to generate at least an additional two to three harmonics. By
multiplying x2 with another scaled replica of x, the third harmonic x3 can be created, and
so on. The output signal y, assuming that three harmonics above f0 are generated, will
become

y(t) = h0 +
2∑

i=1

[
h2i−1 sin((2i − 1)× 2πf0t)+ h2i cos(2i × 2πf0t)

]
(2.9)

the hi being the scale factors given as

h0 = g1g2

2

[
1+ 1

4
g3g4

]
, (2.10)

h1 = g1

[
1+ 3

4
g2g3

]
,

h2 = −g1g2

2

[
1+ g3g4

]
,
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h3 = −g1g2g3

4
,

h4 = g1g2g3g4

8
,

If we prespecify what the amplitudes hi should be (the amplitude of h0 is the uninteresting
DC term, which will be filtered out later, thus we do not care about its value), then we
must choose the scaling factors gi such that

g1 = h1 + 3 h3, (2.11)

g2 = −2
h2 + 4h4

h1 + 3h3
, h1 �= −3h3,

g3 = 2h3

h2 + 4h4
, h2 �= −4h4

g4 = −2
h4

h3
, h3 �= 0

As long as none of the numerators of Eqn. 2.11 are zero, the scale factors are well
behaved and can be chosen to yield any desired harmonics spectrum. If, for example,
all harmonics amplitudes are to be +1, then we have g1 = 4, g2 = −10/4, g3 = 2/5,
and g4 = −2. Note that the even harmonics will be π/2 rad out of phase with the odd
harmonics (Eqn. 2.9). For the multiplying NLD, we do not give an example of an AIM
simulation (Sec. 1.4.8), as the number and amplitudes of harmonics is not fixed in this
case: they both depend on the gi and the level of multiplication used.

Intermodulation distortion Non-linear devices exhibit the so-called intermodulation dis-
tortion: the presence of frequency components in the output that are not harmonically
related to frequency components in the input. It is the interaction of the input frequency
components that produces these intermodulation distortion products. The frequencies at
which they occur are the sum and difference frequencies of the input components, but the
amplitudes depend on the kind of non-linearity and also on the amplitudes of the input
frequency components.

Assume a signal s with two frequency components, at f1 and f2 (which are not them-
selves harmonically related), with amplitudes 1 and 0 ≤ a ≤ 1. The magnitude of the
Fourier representation is given by delta functions, which are

s
|F |→ [f1]+ a[f2]. (2.12)

Here, we have used a shorthand notation on the right-hand side of the arrow, where a[f2]
indicates a frequency component at frequency f2 with amplitude a, and so on. Multiplying
s with itself yields

s2 |F |→ (∗) [2f1]+ a2[2f2] (2.13)

(†) 2a ([f1 − f2]+ [f1 + f2]) .
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The harmonic components are indicated by (∗) and the intermodulation distortion compo-
nents by (†). We can define a harmonic-to-distortion energy ratio ς (akin to signal-to-noise
ratio)

ς = 10 log

∑
f 2

(∗)∑
f 2

(†)

(2.14)

which, for s2 would be

ς2 = 10 log

[
12 + (a2)2

2× (2a)2

]
= 10 log

[
1+ a4

8a2

]
(2.15)

= −10 log 8+ 20 log
1

a
for a � 1.

High ς2 can be achieved for a � 1; the minimum value (worst-case distortion) of
ς2 = −6.0 dB occurs for a = 1. Continuing along the same lines, we now multiply s

with itself twice, and obtain

s3 |F |→ (∗) 1

4
((3+ 6a2)[f1]+ [3f1]+ 3a(2+ a2)[f2]+ a3[3f3]) (2.16)

(†)
3a

4
(a([f1 − 2f2]+ [f 1+ 2f2])+ [2f1 − f2]+ [2f1 + f2]).

For s3, the harmonic-to-distortion energy ratio ς3 becomes

ς3 = 10 log

[
23a6 + 18a4 + 36a2 + 5

9a2(a2 + 1)

]
(2.17)

= −10 log
9

5
+ 20 log

1

a
for a � 1.

The lowest value ς3 = 6.4 dB occurs for a = 0.832; compared to the minimum value of
ς2, this is a much better situation. For s4, we compute ς4 directly as

ς4 = 10 log

[
17a8 + 288a4 + 17

a2(176a4 + 36a2 + 176)

]
(2.18)

= −10 log
176

17
+ 20 log

1

a
for a � 1.

The worst-case distortion value is now ς4 = −1.5 dB, at a = 0.545. This analysis can be
continued for all necessary levels of multiplication (depending on how many harmonics
are desired), but the point should be adequately illustrated. The ‘grand total’ ςt , that is,
that of the weighted sum of the si , with weighting factors gi , is not a simple combination
of the ςi , but has to be recomputed by adding all harmonic and distortion energies and
taking the ratio. The final result will be a function of a and the gi , and may serve to choose
a particular combination of gi that will maximize ςt , subject to some constraints on the
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Figure 2.6 The harmonic-to-distortion energy ratio ς for the output signal of a multi-
plying non-linearity, given a two-tone input with amplitudes 1 and a, as a function of a.
The subscripts indicate the highest harmonic number at the output, for example one ς2
applied to one level of multiplication, where the double frequency is generated

desired harmonic amplitudes hi (Eqns. 2.10 and 2.11). In Fig. 2.6, ς2 –ς4 are plotted as
a function of a.

The above analysis is of course incomplete in the sense that situations with more than
two input frequency components can occur in practice. The analysis becomes very tedious
for such involved cases, though. Also, the metric ς can only be regarded as a very crude
approximation to subjective quality, for it ignores that some of the weaker components
may be masked by the stronger components. As the distortion components are generally
smaller than the harmonic components, one could argue that ς overestimates the effects
of distortion: in practice, some of the distortion components will be masked. In other
words, a high value for ς is always good, but a low value is not necessarily very bad.
It would be interesting to study this with a psychoacoustic model, using for example the
two-component signal illustrated in the above analysis.

2.3.2.2 Rectifier

Spectral characteristics A very efficient method of harmonics generation is by rec-
tification; either half-wave or full-wave. Both analog and digital implementations are
trivial, and another favourable aspect is that rectification is a homogeneous operation.
Of course, as a whole the system is non-linear, and the output frequency components
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are mostly double those at the input. To compute the harmonics spectrum exactly, we
apply a pure-tone input signal of frequency f0, and compute the Fourier series bk of the
full-wave-rectified signal

bk = f0

∫ 1/f0

0
| sin(2πf0t)| e−2πikf0t dt

=
{

2
π(1−k2)

for even k,

0 for odd k.
(2.19)

The resulting spectrum consists of only the even harmonics of f0, which implies that
the fundamental frequency of the output signal is now 2f0. Perceptually, this means that
the synthetic bass sounds an octave too high, compared to the input signal. However,
the increase in bass perception using this kind of low-frequency psychoacoustic BWE
can still be attractive (mainly because of the efficient implementation). The harmonics
spectrum decays quite rapidly, at −12 dB per octave.

Figure 2.7 shows the AIM calculations for a 200-Hz rectified signal, with the input
component added back. Thus, the signal contains 200, 400, 800, 1200 Hz, and so on.
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Figure 2.7 AIM calculations for a rectified pure tone with frequency f0 = 200 Hz; the
pure tone is added back to the rectified signal, giving a complex tone that includes the
fundamental and all even harmonics. The strongest peak in the frequency-collapsed plot
(lower panel) occurs at a lag of 5 ms (200 Hz). However, there is also a strong peak
at a lag of 2.5 ms (400 Hz). This might indicate an ambiguous pitch or a signal that is
segregated into two percepts
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Although the 200-Hz component would not normally be present in the output of the
rectifying NLD, it is added in this analysis, as without it the pitch percept would be
unambiguously at 400 Hz. This situation might occur when using a small loudspeaker
that cannot reproduce 200 Hz at a sufficient level. It is of interest to see what the effect of
adding back the original 200-Hz component might be on the perceived pitch. The lower
panel shows a dominant peak at a lag of 5 ms, corresponding to 200 Hz. There is another
peak of almost equal amplitude, however, at a lag of 2.5 ms, corresponding to 400 Hz.
This may imply an ambiguous pitch percept, or a failure of the 200-Hz component to
group with the harmonic series, leading to two auditory objects with different pitches. If
it is indeed a grouping problem, then common amplitude modulation of all components
(as would occur in practice) could increase the likelihood that one auditory object is
perceived, instead of two.

Temporal characteristics Beside frequency characteristics, temporal behaviour is impor-
tant as well. In particular, it is desirable that the temporal envelope of the signal remains
as close to the original as possible. If, for example, the attack time of an impulsive sound
is increased, this can be very noticeable. The temporal behaviour of the rectifying NLD is
satisfactory, refer to Fig. 2.8. A 5-cycle 50-Hz tone burst is shown in (a). The rectifying

100 150 200 250
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(b)

(c)
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Figure 2.8 (a) Shows 5 cycles of a 50-Hz tone as input signal to a rectifying NLD, the
output of which is shown in (b). (c) Shows the result after bandpass filtering between 70
and 150 Hz. The filtered output signal reaches full amplitude in the first cycle, which is
beneficial for perceptual quality
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NLD produces the signal shown in (b), after which bandpass filtering between 70 and
150 Hz is done (linear phase, with delay compensation), shown in (c). The filtered output
reaches maximum amplitude within the first cycle.

Intermodulation distortion The robustness of this NLD to intermodulation distortion
when presented with two-tone stimuli, or more complex input spectra, can be assessed
using expressions derived in the appendix of this chapter, which are taken from Larsen
and Aarts [156]. Although the rectifier is a non-linear system, the full output spectrum can
be computed conveniently for arbitrary periodic input signals. Consider a signal f (t), with
Fourier series coefficients ak . The rectified output signal has Fourier series coefficients
bk , which are given by

bk = (2t0 − 1)ak −
∑
n�=k

nan

iπk(k − n)
[1− ei2π(n−k)t0 ] (n ∈ Z, k �= 0), (2.20)

where it is assumed that the input signal has period 1, with a single zero crossing at t0.
Note that for a pure tone (a1 = 1/2i, a−1 = −1/2i, t0 = 1/2) the result of Eqn. 2.19 is
obtained. The more general case, in which the period of the signal is arbitrary and with
an arbitrary number of zero crossings per period, is presented in the appendix at the end
of this chapter. There, it is also shown that for large k the bk are mainly determined by
the slope of f at its zero crossings.

To quantify the amount of harmonic energy versus intermodulation distortion energy,
we can again use the metric ς (Eqn. 2.14). A complicating factor in evaluating Eqn. 2.20,
or its more general form as given in the appendix (Eqn. 2.93), is that the period, or rather
the fundamental frequency f0, of the input signal is a function of the input frequency
components. Assume an input signal with frequencies f1 and f2 and amplitudes 1 and
0 ≤ a ≤ 1; f0 is the greatest common divisor of f1 and f2, for example, 10 Hz for
input frequencies of 50 and 70 Hz, which are then the fifth and seventh harmonics: a±5 =
±1/(2i) and a±7 = ±a/(2i) in Eqn. 2.93. In accounting the harmonic energy of the
output signal, we sum all b2

±5n and b2
±7n, n ∈ Z. We numerically compute ς for a number

of representative cases. Hence, given f1 and f2 (not themselves harmonically related)
with amplitudes 1 and a, we first compute all zero crossings in (0, 1] and then apply
Eqn. 2.93. The harmonic energy is computed as stated above, and all excess energy is
considered as originating from intermodulation distortion. Figure 2.9 shows ς for various
f 1/f 2 ratios; ς(x, y) indicates the harmonic-to-distortion energy ratio for frequencies x

and y (and multiples thereof, e.g. ς(2, 3) would be valid for frequencies 40 and 60 Hz,
and 50 and 75 Hz, etc.). It appears that ς does not depend heavily on the ratio f1/f2.
As ς is quite large for small a, the rectifier will perform well if there is one frequency
component that dominates all others; however, if there are two (or more) components of
comparable amplitude, then distortion will be severe.

2.3.2.3 Integrator

Spectral characteristics Another efficient method of generating harmonics is by inte-
grating the rectified input signal, and resetting the output to zero after each second zero
crossing. A discrete-time algorithm would thus process an input signal x(n) into output
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Figure 2.9 For a two-tone input with frequency ratios (f1, f2), and amplitudes 1 and
a, Eqn. 2.93 can be used to compute the harmonic-to-intermodulation distortion energy
ratio ς , for the rectifying NLD

y(n) according to

y(n) =
{

0 if z(x(n)) = 1 and x(n)− x(n− 1) > 0,

y(n− 1)+ c|x(n)| otherwise.
(2.21)

c is a constant of integration and z is a function that detects zero crossings. In Eqn. 2.21,
the output is reset to zero at positive-going (positive derivative of x(n)) zero crossings,
but negative-going is also possible. The output signal will have the same fundamental fre-
quency as the input signal, and for a pure-tone input will resemble a saw-tooth waveform.
The integration has a low-pass filtering effect, but the discontinuities in the output due
to the resetting create a strong harmonics spectrum. As is true for the rectifier, the inte-
grator is a homogenous system, that is, input and output amplitudes are linearly related.
Assuming a pure tone of frequency 1, the output signal will be (continuous-time)

y(t) =
{

2
π
(1− cos(2πt)) for t ≤ 1

2 ,

2
π
(3+ cos(2πt)) for t > 1

2 .
(2.22)

Here we define t ∈ [0, 1), which is the periodicity interval of y(t). The Fourier series
coefficients ck then follow as

ck = 2k2 + (−1)k − 1

i × 2kπ(k2 − 1)
. (2.23)
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Figure 2.10 AIM calculation for the output of the integrating NLD for a 200-Hz pure-
tone input. There is a single large peak at a lag of 5 ms, indicating a strong pitch percept
at 200 Hz

Thus, the harmonics spectrum comprises all (even and odd) harmonics, decaying at a rate
of −6 dB per octave for large k, and should give rise to a strong pitch at the fundamental.
Therefore, we might expect the integrator to be a good algorithm to serve as NLD for low-
frequency psychoacoustic BWE. This is confirmed by Fig. 2.10, which shows an AIM
calculation for the integrating NLD output of a 200-Hz pure-tone input. The presence of
all harmonics in the output signal yields one dominant peak at a lag of τ = 5 ms (200-Hz
pitch). Even if the fundamental is removed by filtering, or by a poor loudspeaker response
at low frequencies, the 200-Hz pitch remains strong and unambiguous, as is shown in
Fig. 2.11. The AIM calculation was done on a high-pass filtered (300 Hz cut-off) version
of the integrated 200-Hz pure tone.

Temporal characteristics An analysis of the temporal characteristics shows that the
output lags the input, refer to Fig. 2.12. A 5-cycle 50-Hz tone burst is shown in (a). The
integrating NLD produces the signal shown in (b), after which bandpass filtering between
70 and 150 Hz is done, shown in (c). This filtered output signal remains small during the
first cycle, and reaches a significant amplitude only at the end of the first cycle (where
the integrator resets the output to zero). The combined effect is that the attack time of
the input signal is increased, and also that the onset is delayed. This could be particularly
detrimental if higher harmonics of the 50-Hz fundamental are present. More will be said
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Figure 2.11 AIM calculation for the output of the integrating NLD for a 200-Hz pure-
tone input, in which the 200-Hz component is filtered out (simulating the transfer function
of a small loudspeaker). Even though the fundamental is not present in the spectrum, the
remaining harmonics yield a single large peak at a lag of 5 ms, indicating a strong pitch
percept at 200 Hz
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Figure 2.12 (a) Shows 5 cycles of a 50-Hz tone as input signal to an integrating NLD,
the output of which is shown in (b). (c) Shows the result after bandpass filtering between
70 and 150 Hz. The filtered output signal rises more slowly than the input, and only
reaches a significant amplitude at the end of the first cycle. This can lead to a degraded
percept of the signal
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about temporal characteristics when discussing the phase characteristics of the filters of
low-frequency psychoacoustic BWE, in Sec. 2.3.3.3.

The percept is that signals with fast attacks and/or decays sound less ‘tight’.

Intermodulation distortion As for the rectifier, the output signal spectrum for arbitrary
periodic input signals can be computed conveniently; the derivation is presented in the
appendix. The resulting Fourier series ck for a given input Fourier series ak is

c0 =
∫ 1

0
(1− t)|f (t)| dt, (2.24)

ck = bk − α0

i2πk
, k �= 0, (2.25)

for the special case that we assume f0 = 1 and there is one zero crossing in the interval
[0, 1]. The magnitude of the integrator output just before resetting is α0; the bk are the
Fourier series coefficients of the rectified output signal, and are given in Sec. 2.3.2.2. The
bk decay as 1/k, so for large k, ck will be proportional to α0/k. Equation 2.108 (appendix)
can be used to assess the relative amount of intermodulation distortion energy given a
two-tone input signal (with possibly multiple zero crossings in the periodicity interval).
An analytic solution is not available as the parameter α0 depends on the frequencies
and amplitudes of the input frequency components in a complicated non-linear way.
Thus, we resort to numerical methods to compute ς , the harmonic-to-intermodulation
distortion energy ratio, as in Sec. 2.3.2.2. Results are shown in Fig. 2.13 for a few f1, f2
combinations, where the amplitude of f1 is always 1, and the amplitude of f2 is 0 ≤ a ≤ 1.
In comparison to Fig. 2.9, which plots ς for various f1/f2 ratios using the rectifying
NLD, the integrating NLD is seen to be significantly more robust against intermodulation
distortion, as the ς’s are considerably larger. In fact, ς > 0 for almost all a. The graphs
in Fig. 2.13 display a number of ‘knee points’, where ς suddenly decays more rapidly
with increasing amplitude a of the f2 component. This occurs because at particular values
of a, additional zero crossings are created in the periodicity interval, which cause large
changes in the output spectrum (see also Eqn. 2.108 in the appendix).

2.3.2.4 Clipper

Spectral characteristics A convenient way to generate a harmonics signal with only odd
harmonics is by means of a limiter or a clipper. The limiter output signal gl in response
to an input f is

gl(t) =
{

1 if f (t) ≥ 0,

−1 if f (t) < 0.
(2.26)

For the clipper, the output signal gc is

gc(t) =



f (t) if |f (t)| ≤ lc
lc if f (t) > lc,

−lc if f (t) < −lc,

(2.27)
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Figure 2.13 For a two-tone input with frequency ratios (f1, f2), and amplitudes 1 and
a, Eqn. 2.108 can be used to compute the harmonic-to-intermodulation distortion energy
ratio ς , for the integrating NLD

where lc is the clipping level, here taken to be symmetrical around zero. One could also
define different clipping levels for positive and negative signal values. Both the limiter and
the clipper will generate odd harmonics of a pure-tone input signal, but are not directly
suitable for BWE applications, as they are not homogeneous systems. For the limiter,
this is because the output level is always ±1, a highly non-linear characteristic. This
can be overcome by detecting the envelope of the input signal and scaling the limited
signal appropriately. For the clipper, the situation is a little bit more complicated. For
low input levels, there may be no clipping at all, if |f | does not exceed lc, thus gc = f .
At intermediate input levels, moderate clipping will occur, with the desired harmonics
generation. At very high input levels, such that mostly |f | � lc, the clipper becomes a
limiter (with output ±lc). The characteristics of a clipper vary significantly as the input
level varies. Again, this can be overcome, or at least reduced, by scaling lc in response to
the level of f . In fact, by doing this in a special way, the clipper has demonstrated very
good subjective results in the low-frequency psychoacoustic BWE application – we will
elaborate on this later. As the subjective performance of the clipper is generally superior
to that of the limiter, we will focus on the clipper in the remainder of this section. In
Chapter 5, on high-frequency BWE of audio, we will introduce the ‘soft’ clipper, an
operation that does not have a ‘hard’ threshold above which the output signal is not
allowed to rise, but rather a mild compression of the input as the input level increases.
The clipping as discussed in this section is hard clipping.

The spectral characteristics of a clipped sine depend greatly on the clipping level lc.
As a special case of the more general situation described in the appendix (Sec. 2.6.4), the
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Fourier series coefficients of the clipped sine are, for the fundamental

a1 = (2t1 + sin 2t1)

π
, (2.28)

(using t1 = sin−1 lc), and for the odd harmonics (even harmonics are zero because of the
symmetry)

a2n+1 = sin 2(n+ 1)t1

π(n+ 1)(2n+ 1)
+ sin 2nt1

πn(2n+ 1)
(2.29)

As lc approaches 0, we find as limiting case (for all values of n)

an ≈ 4lc

πn
, (2.30)

which is also the result for the limiter (at level lc). Figure 2.14 shows the Fourier series
coefficients according to Eqns. 2.28 and 2.29 for 0 <= lc <= 1.

Figure 2.15 shows an AIM calculation for a clipped 200-Hz pure tone. There is a
clear peak at τ = 5 ms, corresponding to a pitch percept of 200 Hz. There are two rather
large and broad peaks at smaller lags, and these become very prominent if the fundamental
frequency is removed, for example, by high-pass filtering at 300 Hz, as shown in Fig. 2.16.
The sharpest peak still occurs at τ = 5 ms (200-Hz pitch), but the other peaks (around
3 and 2 ms) are very large as well. The reason these peaks occur is that whereas only
a 200-Hz fundamental ‘fits’ the given harmonic series perfectly, there are other possible
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Figure 2.14 Magnitudes of harmonics of a clipped sine; clipping level lc. Harmonic k

is indicated as bk; note that for k ≥ 5, magnitudes may be zero for some lc. The dashed
vertical line indicates the commonly used value of 0.5 for the clipping level
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Figure 2.15 AIM calculations for a complex tone consisting of f0 with odd harmonics
(3, 5, and 7)
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Figure 2.16 AIM calculations for a complex tone consisting of odd harmonics (3, 5,
and 7), without fundamental f0
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fundamentals that fit ‘reasonably’ well. Especially, if we only consider the odd harmonics
3, 5, and 7 (which are in the dominance region for pitch perception (Ritsma [227]), then a
333.3- or a 500-Hz fundamental fits the harmonic at 1000 Hz exactly and roughly matches
the 600 and 1400 Hz harmonics. Because the fit is not exact, pitches corresponding to
either 333.3 or 500 Hz would be quite vague. But it would seem that the signal as a
whole would not have a well-defined pitch, as would for example, the output signal of
an integrator (Sec. 2.3.2.3 and Figs. 2.10–2.11). Thus, when a clipping NLD is used in
low-frequency psychoacoustic BWE, and the fundamental frequency is not reproduced,
then the resulting pitch may not be very strong at the original fundamental.

Temporal characteristics Figure 2.17 shows a 50-Hz signal (a), which clipped at lc =
0.5; the resulting signal is shown in (b) (amplitude normalized). The clipped signal is
filtered between 70 and 150 Hz, as shown in (c). The filtered output reaches maximum
amplitude within the first cycle, thus the temporal characteristics are good.

Intermodulation distortion The general expression for the output spectrum Fourier coef-
ficients bn of a clipped periodic input signal with Fourier coefficients an is given in the
appendix, Sec. 2.6.4. The result for a signal with period 2π is

bn = 1

2π

K∑
k=1

∞∑
m=−∞

mam

ei(m−n)βk − ei(m−n)αk

i(m− n)
, (2.31)
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Figure 2.17 (a) This shows 5 cycles of a 50 Hz tone as input signal to a clipping NLD,
the output of which is shown in (b). (c) This shows the result after bandpass filtering
between 70 and 150 Hz. The filtered output reaches maximum amplitude in the first
cycle, which is beneficial to perceived quality
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Figure 2.18 For a two-tone input with frequency ratios (f1, f2), and amplitudes 1 and
a, the harmonic-to-intermodulation distortion energy ratio ς for the clipping non-linearity,
at a clipping level of 0.5 (signal is normalized to the range [-1, +1])

with the αk, βk (k = 1 . . . K) determining the intervals [αk, βk] where the signal is not
clipped; these will depend on the clipping level lc and the amplitude of the signal.

This analysis was performed for a two-tone input signal, with frequencies f1 and f2,
amplitudes 1 and a = [0, 1]. Because a clipping non-linearity is not a homogeneous
system, all signals were normalized to the range [−1, +1], and then clipped at a level
of 0.5. Without this normalization ς , values are about 2 dB lower for a ≈ 1. For the
normalized clipped signals, ς is shown in Fig. 2.18. It is obvious that the values are
significantly higher than for any of the preceding non-linearities discussed (multiplier,
rectifier, integrator). Presumably, this is due to the fact that during portions in which the
signals are clipped, the output remains fixed at the clipping level, and the influence of
the interfering frequency components is thus minimized. The effect of clipping level lc
(for a fixed two-tone input signal) is not large for lc < 0.5: ς drops by only a few dB
as lc ↓ 0 (indicating that a limiting non-linearity performs slightly worse than a clipping
non-linearity with respect to intermodulation distortion). As limlc↑1, limς→∞.

Input-level-dependent clipping level It was already mentioned that the clipping level lc
should be scaled according to the envelope of its input signal f . Here, we shall discuss
how this scaling can be implemented, following a method proposed by C. Polisset. The
basic idea is to follow the envelope of f with different time constants during the attack
and decay of the waveform. We define the nominal clipping level lN,c such that for
stationary input signals

lc = lN,c max |f (t)|, (2.32)
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for example, lN,c = 1/2 would be a typical choice, such that the clipping level is half
of the maximum absolute value of f . The time dependence of lc can then be defined as
(assuming a sample rate of 1/Ts)

lc(t) =
{

alc(t − Ts) if |f (t)| ≤ lc(t)/ lN,c,

lN,c|f (t)| if |f (t)| > lc(t)/ lN,c.
(2.33)

Such a dependence will cause lc to follow without delay, any increase in amplitude of f ,
but to decrease at a maximum rate given by the parameter a of Eqn. 2.33. For stability
reasons, 0 < a < 1. To achieve a specified decay time τ1/2 (duration in which lc will
halve in value), a is given by

a = e− ln 2
τ1/2
Ts . (2.34)

The limited rate of decrease of lc is purposefully chosen such that typical musical sig-
nals decay much faster. An illustration hereof is given in the upper panel of Fig. 2.19.
The solid line shows a decaying musical signal, and the dashed line is the associated
clipping level. During the initial phase of the signal, where the envelope rises fast, the
clipping level is increased to half of the envelope. During the next phase, the level of the
signal is sustained, causing a stationary envelope. The clipping level is also stationary.
The harmonics spectra during the various phases are shown schematically in the accom-
panying insets of Fig. 2.19. The last part of the signal is the decay, where the clipping
level decays at a much slower rate than the signal envelope. Therefore, before the signal
reaches zero amplitude, the clipping level has exceeded the signal level. From that point
on, no harmonics will be generated. Effectively, after the sustained period of the signal,
the harmonics spectrum slowly changes from its maximum strength to complete absence
(no harmonics).

The time constant for the decay of lc is usually taken in the order of a few seconds.
This will present a problem if the audio signal decreases its overall level rapidly, because
no harmonics generation will occur until lc has decayed sufficiently. Such cases do not
often occur though, in particular not in modern music, which typically has a very low
dynamic range. The clipping level usually does not vary over a great range.

The perceptual effect of the varying harmonics strength seems to be generally beneficial
to the low-frequency psychoacoustic BWE application. Some reasons for this observed
benefit might be:

• Most instruments have time-varying spectral characteristics, and the level-dependent
clipper might emulate these characteristics better than other NLDs.

• During the final part of the signal, there is no harmonics generation at all, and thus the
output of the level-dependent clipper is equal to its input. This means that the latter part
of the output signal will have a much lower audibility than if a full harmonics spectrum
were generated. The ‘tone-lengthening’ effect mentioned in Sec. 2.2.3 might thus be
decreased, or prevented altogether. This means the audibility of the output signal has
been greatly increased relative to the input, but tone duration has not markedly changed.
One could assume that this is preferred by listeners.
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Figure 2.19 A transient signal and associated clipping level (dashed line). As the signal
level decreases, the clipping level decreases at a much slower rate (it is shown constant
in this figure). This causes the harmonics spectrum to change during the lifetime of the
signal, as is shown in the accompanying insets. Inset a shows the harmonics at maximum
strength at the beginning of the signal; inset b shows a moderate strength signal when the
clipping level becomes relatively high; inset c shows the harmonics spectrum during the
decay, where the signal level is below the clipping level. The only component left is the
fundamental frequency

• Because the latter parts of the output signal have a weak or non-existent harmonics
spectrum, the overall timbre remains closer to that of the input. Even though this
comes at a cost of reduced loudness, the closer-matching timbre might be preferred by
listeners.

The time-varying harmonics spectrum is a natural effect of a clipping non-linearity, and the
method of varying the clipping level according to Eqn. 2.33 gives an appropriate spectro-
temporal characteristic to the clipper. It would be much harder to implement something
similar for a rectifying (Sec. 2.3.2.2) or integrating (Sec. 2.3.2.3) non-linearity. These
NLDs produce a harmonics spectrum that is independent of level, and the only way to
create a time-varying harmonics spectrum would involve modifying some basic property
of the NLD.

Amplitude non-linearities on various time scales As presented here, a point has been
made that the level-dependent nature of the clipper is beneficial to subjective quality.



80 Audio Bandwidth Extension

However, on several earlier occasions it has been emphasized that a level-independent
NLD is the best for BWE applications (NLDs should be homogeneous systems). Thus,
there appears to be a contradiction. The resolution of this (apparent) contradiction is
the fact that the notion ‘level dependent’ can be viewed on different time scales. The
clipper with varying lc (Eqn. 2.33) is designed with the aim to provide a level-dependent
clipping on a small time scale, that of a single note. If the entire level of the audio signal
changes on a larger time scale, the clipping level will adjust appropriately. Therefore,
the level-dependent clipper is level independent (linear in amplitude) if one considers a
‘large-enough’ temporal window. In conclusion, a more precise statement might be that
BWE algorithms should be homogeneous on a ‘large’ time scale, in which ‘large’ means
considerably longer than a typical musical note. On a ‘small’ time scale (approximately
the duration of a tone), the algorithm may be non-linear in amplitude.

2.3.2.5 Discussion of Non-linear Devices

All of the NLDs discussed previously in this section have distinct advantages and disad-
vantages. For each NLD, an analysis was presented of spectral, temporal, and intermod-
ulation distortion characteristics, and a summary of these is shown in Table 2.1. Apart
from such an objective point of view, a subjective rating is ultimately more important; of
course the objective analysis helps to understand the subjective impressions.

Subjective experiments will be discussed in Sec. 2.5, in which the rectifying and inte-
grating NLDs were included. The result of that experiment was that both these NLDs
were rated approximately equal, with a slight advantage for the rectifying NLD, which
may seem surprising given the better spectral characteristic of the integrator. The clip-
ping NLD was not included in this test as it was, at the time of the experiment, not
fully developed. Subsequent subjective evaluations have usually favoured the clipping
NLD over all others, although no formal experiments have been conducted to confirm
this. Much more on the subjective evaluation of low-frequency psychoacoustic BWE will
follow in Sec. 2.5.

Table 2.1 Summary of objective features of the various NLDs. The last row describes a frequency-
tracking NLD, to be discussed in Sec. 2.4

Characteristic Amp.-linear Spectral Temporal Interm. dist.

Multiplier No, needs signal
level scaling

Flexible Good Variable, depends
on harmonic
number

Rectifier Yes Even harmonics
(pitch doubling)

Good Moderate-poor
depends on input

Integrator Yes All harmonics Poor, slow
attack/decay

Good

Clipper Long-time: yes
Short-time: no

Odd harmonics, is
ambiguous without
f0

Good Very good

Freq. track. Yes Flexible Good Excellent
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2.3.3 FILTERING

Whichever NLD is used in the low-frequency psychoacoustic BWE system (Figs. I.2 and
2.4), it must be supplied with an appropriate input signal. Also, its output usually needs
some filtering to yield a pleasant timbre. The characteristics of these two filters will be
discussed in this section. Also, for low-frequency psychoacoustic BWE, it is important
that the filters are linear phase, as will be demonstrated in Sec. 2.3.3.3.

2.3.3.1 Filter 1

Filter 1 precedes the NLD and its function is to pass only those frequencies that need to
be enhanced. The use of this filter is one of the essential differences between the use of
controlled distortion for low-frequency psychoacoustic BWE applications versus uncon-
trolled distortion as may occur in amplifiers or loudspeakers. In the discussions of various
NLDs in Sec. 2.3.2, we found that introducing more than one frequency component to the
NLD leads to intermodulation distortion, which should be avoided. Thus, the bandwidth
of filter 1 should not be too large. If necessary, filter 1 could be replaced by a filterbank,
spanning the same frequency range as the original filter, with each filter connected to an
identical NLD, the outputs of which will be summed at the end. In such an arrangement,
each filter has a very narrow bandwidth, and intermodulation distortion will be minimized,
at the expense of increased algorithmic complexity. However, on the basis of our experi-
ence, the use of one single filter does not cause excessive intermodulation distortion, and
therefore the use of the just-mentioned filterbank does not seem necessary.

Filter 1 should not pass frequencies above the low-frequency cut-off, fl, of the loud-
speaker, as these components should be adequately reproduced without processing. There-
fore, the upper limit of filter 1 will be at most fl. In most applications, this value will
vary somewhere between 70 and 200 Hz. In principle, the lower limit of filter 1 should
be approximately 20 Hz, as this is around the minimum audible frequency. But, if the
upper limit of filter 1 is very high, it may be better to increase this lower limit somewhat;
a bandwidth of two octaves should suffice. Note that the lower limit of musical pitch
lies around 40 Hz (Guttman and Pruzansky [102]), so it might be argued that including
frequency components below this limit is of questionable value. Nevertheless, frequencies
below 40 Hz do occur in music (albeit very rarely), and as it is the aim of low-frequency
psychoacoustic BWE to enhance bass perception, we will advocate the use of 20 Hz as
the lower limit. If the limiting frequency is set even lower, then any energy below 20 Hz
(if present in the audio signal for whatever reason), will be reproduced at the correct fun-
damental frequency, which, being so low, is heard as an amplitude modulation instead of
a unified low-pitch percept. The effect on artificially generated tones of frequency lower
than 20 Hz does not sound good, and therefore, the lower cut-off frequency of filter 1
should not be lower than 20 Hz.

The order of the filter does not seem to have too great an effect on quality. Low- and
high-pass flanks of second order (−12 dB per octave) seem to be sufficient for adequate
separation of the bass frequencies. Alternatively, a stopband attenuation of 20 dB will suf-
fice. For the passband ripple, a value of 1 dB seems good enough; it is hard to perceive
any deleterious effects of this ripple if one is presented only with the BWE-processed
signals.
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The phase response of filter 1 should be linear, the reason for which will be demon-
strated in Sec. 2.3.3.3.

2.3.3.2 Filter 2

The second filter, placed behind the NLD, filters the harmonics spectrum such that a
reasonable timbre results. This is necessary as the timbre of the harmonics directly out of
the NLD usually sounds too ‘sharp’, which is caused by the harmonic amplitudes being
too large. By low-pass filtering, a more pleasant timbre can be achieved. Again, a second-
order filter (12 dB per octave) usually suffices. Note that a low-pass flank of −12 dB per
octave does not mean that successive harmonics will be attenuated by 12 dB relative to
each other. Because the fundamental frequency of the filtered signal is usually quite low,
there may be several harmonics present in a single octave at the low-pass flank of the
filter. This is illustrated in Fig. 2.20.

The fundamental frequency is usually attenuated by filter 2, because it is either not
desired in the output signal, and if it is, it is available directly from the original audio
signal. Thus, filter 2 employs a high-pass flank, of moderate order, with a cut-off frequency
that is (roughly) equal to the higher frequency limit of filter 1. Thus, filter 2 has a bandpass
characteristic, with a bandwidth of about 1 to 1.5 octaves wide.

Filter 2 is preferentially implemented as a linear-phase filter, for reasons that will be
explained in the next section.
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Figure 2.20 A second-order Butterworth bandpass filter with cut-off frequencies of 70
and 140 Hz. A harmonics signal with 40-Hz fundamental has harmonics as indicated by
the filled circles: the filter attenuation in dB of successive harmonics is indicated on the
right flank of the filter. Note that this attenuation depends both on the filter order and on
the fundamental frequency value



Psychoacoustic Bandwidth Extension for Low Frequencies 83

2.3.3.3 Linear versus Non-linear Phase Filters

The topic of using linear-phase versus non-linear-phase filters in audio processing can
sometimes be a controversial one. Although there is little scientific evidence that people
are sensitive to phase distortion – excluding some special cases – some would claim that
linear-phase systems sound far better than their non-linear-phase counterparts. The issue
of linear or non-linear phase for low-frequency psychoacoustic BWE filtering can be
analysed objectively, and the conclusion is that it is better to employ linear-phase filtering,
for reasons to be explained next.

Because in low-frequency psychoacoustic BWE the filter bandwidths and cut-off fre-
quencies are usually orders of magnitude smaller than the system sample rate, IIR imple-
mentations are more efficient computationally than a direct FIR implementation. For a
modest sample rate of 10 kHz, a frequency resolution of 10 Hz (which would be required
to design a filter with a passband of about 100 Hz) would necessitate 1000 taps. In con-
trast, an IIR filter of ten or less coefficients will probably achieve the desired requirements
as well. A drawback of IIR filters is that the phase is non-linear. Lower-order FIR fil-
ters are possible if the signal is downsampled before NLD processing. Because NLD
implementations are computationally trivial (rectification, clipping, integration), there is
not much to gain from downsampling from a computational point of view, and the
required anti-alias filters will probably negate the advantage of processing at a lower
sample rate. Another option to use FIR filters at reduced complexity is through frequency
warping (Härmä et al. [104]). With this technique, it is possible to trade high-frequency
resolution for low-frequency resolution, which would allow lower-order FIR filters to
be used. The concept has not been evaluated for low-frequency psychoacoustic BWE,
though.

To be explicit, the problems with non-linear-phase filters in low-frequency psychoa-
coustic BWE are:

• Interference of synthetic harmonics signal with other signal components. The output of
the NLD consists of harmonics, and sometimes the fundamental frequency component
as well. After filtering by filter 2, these are added back to the main signal. Because the
main signal also contains the fundamental, and possibly some harmonics, interference
will occur. As the phase relationships of the original fundamental and its harmonics
and the synthetic BWE signal are impossible to predict a priori, the nature of this
interference (constructive or destructive) is unknown. We can examine this issue to
some degree by using a method devised by C. Polisset (private communication), in
which we use a pure-tone input and compute the steady-state output signal for a BWE
algorithm. If we then compare the energy of this output signal to the input signal, it
will be apparent if interference occurs. We will denote this frequency ratio by h(f, g),
akin to a transfer function, with frequency f and harmonics gain g as parameters.
Note that h(f, g) is not a transfer function in the common sense of the term, because
BWE systems are not linear (and sometimes not time-invariant either, in the case of
level-dependent clipping). We have

h(f, g) = [sin(2πf t)+ gφ(sin(2πf t))]rms

[sin(2πf t)]rms
. (2.35)
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The function φ indicates the BWE processing. We can also compute h(f, g) for the
ratio of rms value of harmonics signal (without adding the input signal) to the rms value
of the input signal. By means of example, we use a BWE algorithm with elliptic IIR
filters (FIL1 from 20–70 Hz, both flanks of second order; FIL2 from 70–140 Hz, both
flanks of second order) and a clipping non-linearity at 50% clipping level. The results
are shown in Fig. 2.21. Panels a and c show values of h(f, g), with harmonics-to-input
energy ratio in panel a and harmonics + input-to-input energy ratio in panel c. Note
that significant gain is obtained in a narrow frequency interval, and that destructive
interference occurs in panel c for frequency values slightly below 100 Hz. This would
mean that the output energy of the BWE system would actually be smaller than the
input energy. In contrast, panels b and d show h(f, g) in the same conditions, but
using linear-phase implementations of the same filter characteristics (to be discussed
below). Note that gain is obtained over a much broader frequency interval, and that
variations of h as functions of f and g are much smoother than in panels a and c. The
general features shown in the four panels of Fig. 2.21 are not dependent on the use of
elliptic filters or the specific frequency bands used.
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Figure 2.21 (a): h (see Eqn. 2.35) considering BWE with non-linear phase filters; input
frequency and harmonics gain are variables. The ratio of harmonics-to-input energy is
shown as the third dimension. (b): same, but for a linear phase filter with the same
spectral specifications, and otherwise similar BWE processing. (c): h as in (a), but the
value shown is of harmonics+input-to-input energy. (d): same, but for a linear phase filter.
Note that in both cases the linear-phase filter implementations of the BWE processing
give much smoother characteristics
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Figure 2.22 Group delay of four IIR filters (Butterworth, Chebyshev type 1, Chebyshev
type 2, and elliptic, with bandpass 70–140 Hz, second-order low-pass and high-pass,
fs = 44.1 kHz). Every filter shows large variations in group delay

• Frequency-dependent delay of harmonics signal. Because the group delay of a filter is
equal to the derivate of the phase response, a non-linear-phase filter will have a non-
constant group delay. This means that different frequency components will be delayed
by different amounts of time. For low-frequency psychoacoustic BWE applications,
this variation in delay can be significant even for successive harmonics. To see this,
we computed group delay for four common IIR filter types in Fig. 2.22, where all
filters were bandpass filters with cut-off frequencies of 70 and 150 Hz, and both flanks
were of second order. The total group delay varies with filter type, but reaches 10 to
15 ms in the passband of the filters, and almost 20 ms for the Chebyshev type 2 filter;
this is around 1–2 signal periods for the frequencies of interest. The variation in group
delay with frequency, being more important, is around 5 ms for most filter types. This
may seem a small amount, but results from a study by Zera and Green [304] indicate
that such delays may be audible. They investigated the audibility of onset asynchronies
of various harmonics of a multi-tone complex, for a variety of onset times, and found
that delays of 2 ms are audible. Also note that the BWE algorithm uses two filters,
and, thus, group delay variations will be approximately twice the value as indicated in
Fig. 2.22: in the order of 10 ms. They also found that thresholds for offset asynchronies
are significantly larger than for the onset asynchronies. Thus, we may expect that the
delay variations caused by non-linear-phase filters in BWE are audible at the onset of
tones with a fast attack. Another effect that may be important is that common onset of
individual frequency components is a strong grouping cue (Bregman [38]). Conversely,
an asynchrony in onset across frequency may cause segregation of some harmonics
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from the bulk of the harmonic complex, causing two (or more) tones to be heard in the
BWE-processed signal. We have some anecdotal evidence that this indeed occurs, as
musically trained listeners have sometimes commented that bass tones sound delayed
with respect to the rest of the music, when listening to low-frequency psychoacoustic
BWE processing (with IIR filters).

Low-frequency psychoacoustic BWE sounds better with linear-phase filters than with
non-linear-phase filters, and it is plausible that the two reasons discussed above are respon-
sible for this. It is not clear how much either effect (interference and group delay vari-
ations) deteriorates the quality by itself, but in any case, there is sufficient motivation
to use linear-phase filtering in low-frequency psychoacoustic BWE algorithms. A useful
method of implementing linear-phase IIR filters was devised by Powell and Chau [213].
Basically, the method involves a double filtering of the signal; once in ‘forward’ time
and once in ‘backward’ time (reversing the order of the samples). The backward-time
filtering exactly compensates the frequency-dependent delay of the forward-time filtering;
the magnitude characteristic imposed on the signal is the square of the filter when applied
once, but this can be accounted for in the design of the filter. In a real-time system, finite
blocks of data must be used, and for a good block connection, the overlap-add method
(OLA) is used (Allen [18]). In this way, the low computational complexity of the IIR
filter is maintained, although the OLA requires each sample to be effectively processed
four times. Still, this will be much more efficient than a direct FIR implementation.

The linear-phase filtering by filter 1 and filter 2 should be accompanied by a corre-
sponding delay of the main signal in the unprocessed signal branch (Fig. 2.4). If the main
signal is high-pass filtered (to remove frequencies below fl), this is best done with a
linear-phase filter as well. The net effect is then a delay of the entire signal.

2.3.4 GAIN OF HARMONICS SIGNAL

The final step before adding the generated harmonics signal back to the main signal is
scaling. In Sec. 2.2.3, three points were noted:

• Frequency dependence of loudness: This implies that loudness of equal-level (sound
pressure level) harmonics will be higher than that of the fundamental.

• Frequency dependence of ‘loudness growth’: This implies that equal variations in sound
pressure level will lead to smaller loudness variations for the harmonics than for the
fundamental.

• ‘Tone-lengthening’ effect: The combination of increased loudness and better loud-
speaker response at frequencies of harmonics (vs fundamental) leads to tones that
sound longer when BWE-processed.

In Sec. 2.3.4.2, a method is presented to adaptively vary the gain of the harmonics signal,
based on the equal-loudness contours. In Sec. 2.3.4.3, a method that varies the gain
according to the total output level of the BWE signal is presented.

2.3.4.1 Fixed Gain

The simplest solution is to simply ignore the loudness variations with frequency, and
apply a fixed gain to the harmonics signal. Loudness variations for various frequencies
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are generally not huge, and, therefore, a fixed gain can be a suitable solution for a
simple low-frequency psychoacoustic BWE system. The gain value will depend on the
NLD used and the characteristics of the loudspeaker. From a manufacturer’s point of
view, maximum bass loudness is usually desired. The gain value can be set as high as
is desired, the only limitation being cone excursion and power-handling capacity of the
loudspeaker (Sec. 1.3.2).

2.3.4.2 Frequency-adaptive Gain

Another method is due to Gan et al. [83] (‘Virtual Bass’). They consider that the ‘trans-
fer function’ of pressure amplitude to loudness (SPL to phones) is similar to that of a
downwards expander, with a frequency-dependent expansion ratio Er . In other words, if
the level at the input is lower by x dB, the loudness will decrease by Er(f )× x dB. For
example, for 40 Hz the expansion ratio is 1.52, while for 100 Hz the expansion ratio is
1.24. A further assumption is that the expansion ratio is nearly independent of absolute
loudness in the range 20–80 phones, for frequencies of 110–1000 Hz2. With respect to
log-frequency, a simple relationship is found to estimate the frequency-dependent expan-
sion rate Êr , as

Êr = −0.103 ln f + 1.71, f > 100 Hz, (2.36)

where it is acknowledged that for frequencies below 100 Hz this approximation under-
estimates the actual expansion ratio. Suppose now that harmonics of a fundamental fre-
quency f0 are generated, and consider the nth harmonic. The ‘harmonics expansion ratio’
HÊr(f0, n) to be used for this harmonic is then given by

HÊr(f0, n) = Êr (f0)

Êr(nf0)
, (2.37)

and specifies the expansion ratio of the nth harmonic relative to the fundamental. For
40 < f0 < 100 Hz, the expansion ratio for higher harmonics is fairly independent of f0
and is given as in Table 2.2. The ‘Virtual Bass’ algorithm uses a modulation technique
(the original reference does not detail this procedure) to generate the individual higher
harmonics, and therefore it is possible to apply the appropriate expansion ratio to each
harmonic. Observing that the expansion ratio for all the harmonics are roughly 1.10, a
simplification could be to apply this expansion ratio to the entire harmonics signal. In
a structure as in Fig. 2.4, such an expansion may be achieved by first estimating the
envelope f̃ (t) of the BWE harmonics signal f and scaling according to

f (t) = (f̃ )1.1(t)× f (t). (2.38)

Envelope of a signal can be estimated by low-pass filtering the absolute value of the
signal. Figure 2.23 illustrates how such an approach can be incorporated in to the general
BWE structure.

2
It is also implicitly assumed that the equal-loudness-level contours that were measured for pure tones can be

used to assess loudness growth of complex tones, which is unlikely to be entirely valid.
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Table 2.2 Harmonics expansion ratio as
proposed by Gan et al. [83], using
Eqn. 2.37. These values are valid for the
range of fundamental frequencies Gan
et al. considered (40–100 Hz)

Harmonic n 2 3 4 5

HEr(f0, n) 1.06 1.10 1.13 1.15
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Figure 2.23 Part of a low-frequency psychoacoustic BWE algorithm, compare to
Fig. 2.4. The dashed lines indicate a feedforward loop from the output of filter 2, which
estimates the envelope of the harmonics signal. The envelope is then expanded by a factor
of 1.1, and this value is used to scale the harmonics signal. The final scale factor G is
used to bring the entire harmonics signal to an appropriate level

2.3.4.3 Output-level-adaptive Gain

In low-frequency psychoacoustic BWE, the scaled harmonics signal is added back to
the main signal (Fig. 2.4) and applied to the loudspeaker terminals. The BWE processing
emphasizes frequencies above the loudspeaker cut-off frequency fl relative to frequencies
below fl, but still care must be taken to avoid overloading the loudspeaker. One could of
course implement a fixed scaling of the harmonics signal such that at high reproduction
levels distortion is avoided, but this may compromise performance at lower reproduction
levels. Especially if a large bass response is desired, a high gain for the harmonics signal
should be used at low reproduction levels, as audibility rapidly decreases at low sound
pressure levels. Both loudspeaker protection and better matching of human audibility can
be achieved by controlling the gain of the harmonics signal in response to the level of
the output signal, as in Fig. 2.24. The feedback loop will ensure that at intermediate
and low output levels, the gain is at its maximum value, but if the output level is high,
the gain is adjusted appropriately. The decay time of the gain control signal must be
very small, such that distortion is prevented when a sudden loud sound is reproduced.
The gain should increase so slowly as to be inaudible, that is, over a period of several
seconds.
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Figure 2.24 Part of a low-frequency psychoacoustic BWE algorithm, compare to
Fig. 2.4. The dashed lines indicate the feedback loop from the output to a control unit
that modifies the gain of the harmonics signal, such that at low and intermediate output
levels the gain is maximum, but gradually decreased as the output level becomes high

2.4 LOW-FREQUENCY PSYCHOACOUSTIC BANDWIDTH
EXTENSION WITH FREQUENCY TRACKING

2.4.1 NON-LINEAR DEVICE

The BWE algorithm as outlined previously does not discriminate between tonal and
atonal (noise-like) signals. This is because any signal with frequency components within
the passband of FIL1 will be processed by the NLD. Occasionally, this can result in
annoying artifacts, if noise-like signals are processed, such as may occur in music and
speech. This problem could be prevented if BWE processing is only applied to periodic
signals. The scheme presented in Fig. 2.25 achieves this goal. One of the attractive features
of the algorithm is that it does not explicitly decide if the signal has a tonal or noise
characteristic. Rather, BWE processing is implicitly faded out when noise-like signals are
present.

The algorithm will be explained following Fig. 2.25. The first step is to estimate the
dominant frequency ω0 in the input signal x(t) (the box labeled FT), where x(t) is obtained
by filtering the full-bandwidth input signal, such that only low-frequency components
are retained. This frequency estimation is carried out by a recursive frequency-tracking
algorithm, which updates at each new sample according to

r̂k = r̂k−1 + xk−1γ [xk + xk−2 − 2xk−1r̂k−1], (2.39)

where r̂k = cos(ω0(k)Ts), Ts being the sample time, gives the frequency estimate. The
frequency-tracking algorithm will be discussed in more detail later. The frequency estimate
is used to control a harmonics generator (box labeled HG), which generates a harmonics
signal xh(t) as

xh(t) =
N∑

k=M

Ak sin(kω0t), (2.40)
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Figure 2.25 Part of a low-frequency psychoacoustic BWE scheme using frequency
tracking. FT is a frequency tracker, LPFs are low-pass filters, HG is a harmonics genera-
tor, and a is a scaling factor. The output signal y(t) contains harmonics of the strongest
frequency component contained in x(t), but only if x(t) is periodic

where M and N equal the minimum and maximum harmonic numbers that are desired.
These could be determined by ω0 or simply be constant, for example, M = 2 and N = 5.
Note that this method of harmonics generation prevents intermodulation distortion, which
is an advantage over the NLDs discussed previously in this chapter. Also, the amplitudes
of the harmonics can be arbitrarily chosen to produce a desired timbre. It would even be
possible to adapt the amplitudes depending on the input signal, although this possibility
has not yet been further investigated.

Next, the signal is scaled by a gain control signal g(t), resulting in the output signal
y(t). To see how g(t) is determined by x(t), we first assume that x(t) = A0 sin(ω0t+φ).
We also assume that the frequency tracker (FT) correctly estimates the frequency of this
signal. As shown in Fig. 2.25, the following signals are then generated

s(t) = A0 sin(ω0t + φ) sin(ω0t), (2.41)

c(t) = A0 sin(ω0t + φ) cos(ω0t), (2.42)

which can also be written as

s(t) = A0

2
[cos φ − cos(2 ω0t + φ)], (2.43)

c(t) = A0

2
[sin φ + sin(2 ω0t + φ)]. (2.44)

After averaging (by low-pass filtering), we get

s(t) = A0

2
cos φ, (2.45)

c(t) = A0

2
sin φ. (2.46)



Psychoacoustic Bandwidth Extension for Low Frequencies 91

where s(t) and c(t) are slowly time-varying signals. Taking the square root of the sum
of squares, this becomes

σ(t) =
√

s2(t)+ c2(t) = A0

2
. (2.47)

The control signal g is then obtained as

g(t) = aσ(t) (2.48)

if, for example a = 2, then g(t) = A0. Thus, we see that for a sinusoidal input signal
y(t) = xh(t), that is, the output signal has maximum amplitude. Now if x(t) is a noise
signal, the averaged (low-pass) s(t) and c(t) will tend to zero if the averaging time is
sufficiently long. For intermediate cases, the gain control signal g(t) will be scaled xh(t)

down to an appropriately lower amplitude. It thus appears that the gain control signal
varies between 0 (noise inputs) and 1 (sinusoidal input), with a gradual transition between
these two extremes, depending on the periodicity of the input signal. In practice, x(t)

may contain multiple sinusoids and/or a sinusoid in the presence of noise. Section 2.4.2.3
shows how the initial frequency estimation is affected by such signals.

In conclusion, this alternate NLD generates a harmonics signal without intermodulation
distortion, but only for periodic input signals. For noisy input signals, the output tends
to zero.

2.4.2 FREQUENCY TRACKING

Here, we will elaborate on the frequency-tracking algorithm utilized in the NLD of the
previous section. There is a vast literature regarding frequency tracking, owing to the
many applications in, for example, astronomy, acoustics, and communications; see e.g.
Quinn and Hannan [214] and Tichavsky and Nehorai [271] for a comparative study of
four adaptive frequency trackers. Recently, an algorithm was devised for rapid power-line
frequency monitoring (Adelson [15]), on the basis of a number of formulas presented in
Adelson [14]. Most of the algorithms presented in the book of Quinn and Hannan are com-
plex and not very suitable for real-time implementation, while for BWE algorithms, we (as
usual) strive for maximum computational efficiency, by avoiding divisions, trigonometric
operations such as FFTs – which also necessitate the use of buffers – and the like.

Here, we will develop an efficient frequency-tracking procedure, which uses only a few
arithmetic operations, and is insensitive to the initial state of the algorithm parameters. We
also analyse the convergence behaviour of the algorithm for stationary input signals, and
the dynamic behaviour if there is a transition to another stationary state, the latter being
considered important to assess the tracking abilities for realistic signals. The following
derivations and analyses were also published in Aarts [5], and in analogous form pre-
viously for another application (cross-correlation tracking) in Aarts et al. [8]. In slightly
modified form, the algorithm can also be used to track amplitude instead of frequency.

We shall show in Sec. 2.4.2.1 that the recursion

r̂k = r̂k−1 + xk−1γ [xk + xk−2 − 2xk−1r̂k−1], (2.49)
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estimates to a good approximation the frequency of a signal given by

rk = cos(ω0(k)Ts), (2.50)

where ω0(k) is the frequency of the input signal x to be determined, k is the time index, and
fs = 1/Ts is the sampling frequency. The parameter γ determines the convergence speed,
and hence determines the tracking behaviour of r̂ , but not the actual value of limk→∞ r̂k
in the stationary case. Equation 2.49 is the basis for our approach of recursively tracking
the frequency. In Sec. 2.4.2.2, we shall analyse the solution of Eqn. 2.49, starting from
an initial value r̂0 at k = 0, when γ ↓ 0, and we shall indicate conditions under which

lim
γ↓0

[ lim
k→∞

r̂k] = cos(ω0Ts). (2.51)

The analysis is similar to that of an algorithm (Aarts et al. [8]) to track correlation
coefficients, and can be facilitated considerably by switching from difference equations,
as in Eqn. 2.49, to differential equations.

In Sec. 2.4.2.3, we consider the case of a sinusoidal input signal x, and we compute
explicitly the left-hand side of Eqn. 2.51 for the solution of Eqn. 2.49. It turns out that
the recursion Eqn. 2.49 yields the correct value r for the left-hand side of Eqn. 2.51.

2.4.2.1 Derivation of Tracking Formulas

Here, we consider r as defined in Eqn. 2.50, and we show that r satisfies to a good
approximation (when γ is small) the recursion in Eqn. 2.49.

We start with Adelson’s [15] Eqn. 1

r =
∑n−1

j=1 xj (xj−1 + xj+1)

2
∑n−1

j=1 x2
j

. (2.52)

In order to make this formula suitable for tracking purposes, it is modified into

rk =
∑n−1

j=1 xk−j (xk−j−1 + xk−j+1)

2
∑n−1

j=1 x2
k−j

. (2.53)

Now rk depends on n− 1 samples from the past, and the current sample xk . However, it
is not optimal for tracking purposes, since it suffers from the fact that it requires many
operations and may lead to numerical difficulties in the case of a small denominator in
Eqn. 2.53. Therefore, a second modification is made by using – instead of a rectangular
window and an averaging over 2n xixi+1 products – an exponential window. In order to
minimize the number of operations, we select n = 2. Now, we define

rk = Sn

Sd

, (2.54)
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where

Sn(k) =
∞∑

l=0

c e−ηlxk−l−1(xk−l + xk−l−2), (2.55)

Sd(k) =
∞∑

l=0

2c e−ηlx2
k−l−1, (2.56)

c = 1− e−η, (2.57)

with η is a small but positive number that should be adjusted to the particular cir-
cumstances for which tracking of the frequency is required. We now show that r of
Eqs. 2.54–2.57 satisfies to a good approximation the recursion in Eqn. 2.49. To this end,
we note that

Sn(k) = e−ηSn(k − 1)+ cxk−1(xk + xk−2), (2.58)

and

Sd(k) = e−ηSd(k − 1)+ 2cx2
k−1. (2.59)

Hence, from the definition in Eqn. 2.54,

r(k) = Sn(k − 1)+ c eηxk−1(xk + xk−2)

Sd(k − 1)+ 2c eηx2
k−1

. (2.60)

Since we consider small values of η, c = 1− e−η is small as well. Expanding the right-
hand side of Eqn. 2.60 in powers of c and retaining only the constant and the linear term,
we get after some calculations

r(k) = r(k − 1)+ c eη

Sd(k − 1)
xk−1[xk + xk−2 − 2r(k − 1)xk−1]+O(c2). (2.61)

Then, deleting the O(c2) term, we obtain the recursion in Eqn. 2.49 when we identify

x2
rms = Sd(k), (2.62)

for a sufficiently large k, and

γ = c eη

x2
rms

, (2.63)

which is a constant for a stationary signal x(t).
We observe at this point that we have obtained the recursion in Eqn. 2.49 by applying

certain approximations (as in Eqn. 2.62) and neglecting higher-order terms. Therefore, it
is not immediately obvious that the actual r of Eqn. 2.50 and the solution of r̂ of the
recursion in Eqn. 2.49 have the same value, in particular for large k. However, next we
shall show that r̂ shares some important properties with the veridical r .
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2.4.2.2 Analysis of the Solution of the Basic Recursion

Now we consider the basic recursion in Eqn. 2.49, and we analyse its solution r̂(k), given
an initial value r̂0 at k = 0, when γ ↓ 0. It is convenient to introduce the new variables

βk = 2x2
k−1, (2.64)

and
δk = xk−1(xk + xk−2), (2.65)

to remain compatible with the notation in Aarts et al. [8] and Aarts [5]. Thus, we shall
consider the recursion in Eqn. 2.49, which we rewrite as

r̂(k) = (1− γβk)r̂(k − 1)+ γ δk (2.66)

for k = 1, 2, . . . with γ a small positive number and δk, βk bounded sequences with
0 ≤ βk ≤ 1.

In Aarts et al. [8], it was shown how to obtain the limiting behaviour of r̂(k) as k →∞
when γ > 0 is small. This was done under an assumption (slightly stronger than required)
that the mean values (denoted by M[.])

b0(γ ) = M

[−1

γ
log(1− γβk)

]

= lim
K→∞

1

K

K∑
l=1

−1

γ
log(1− γβl),

d0 = M[δk] = lim
K→∞

1

K

K∑
l=1

δl (2.67)

for the discrete-time case and

b0 = M[β(t)] = lim
T→∞

1

T

∫ T

0
β(s) ds,

d0 = M[δ(t)] = lim
T→∞

1

T

∫ T

0
δ(s) ds, (2.68)

for the corresponding continuous-time case, exist.
Since b0(γ ) → b0 as γ ↓ 0, it was shown that

lim
γ↓0

[
lim

k→∞
r̂(k)

]
= M[δk]

M[βk]
= d0

b0
= M[δ(t)]

M[β(t)]
, (2.69)

and for any number b < b0(γ )

r̂(k) = d0

b0(γ Ts)
+O(e−γ bkTs) , k ≥ 0 . (2.70)
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This shows that the time constant τ , that is, the time for the exponential term to drop to
e−1 of its original value, for the tracking behaviour is given by

τ = Ts

γ b0(γ Ts)
. (2.71)

We finally observe that b0(γ ) → b0 as γ ↓ 0. In the next section, we shall work this out
for sinusoidal input signals.

2.4.2.3 Sinusoidal Input Signals

In this section, we test the algorithms derived in Sec. 2.4.2.1, and analysed in Sec. 2.4.2.2,
with respect to their steady-state behaviour, for sinusoidal input signals. Hence we take

xk = A0 sin(ω0kTs + φ), (2.72)

with arbitrary A0 and φ. Calculating δ and β with Eqs. 2.65–2.64, and using Eqn. 2.69,
it is easy to find

lim
γ↓0

[
lim

k→∞
r̂(k)

]
= cos ω0Ts; (2.73)

compare with Eqn. 2.50. This limit obviously does not depend on A0, nor on φ. If
Eqn. 2.72 and rk−1 = cos ω0Ts are substituted into Eqn. 2.49, then we get rk = rk−1,
independent of γ , indicating that r has converged to a constant value. Using Eqn. 2.71
and b0 = A2

0, it appears that the time constant τd of the tracking behaviour is equal to

τd = Ts/(γA2
0). (2.74)

Now consider the case that the signal x consists of two sinusoids (with unequal fre-
quencies), where the latter can represent a disturbance signal or as harmonic distortion of
the first sinusoid. Thus,

xk = A0 sin(ω0k)+ A1 sin(ω1k), (2.75)

and by using Eqns. 2.64, 2.65, and 2.69 we get

lim
γ↓0

[
lim

k→∞
r̂(k)

]
= A2

0 cos ω0Ts +A2
1 cos ω1Ts

A2
0 +A2

1

. (2.76)

Alternatively, consider the case that the signal x consists of a sinusoid with additional
noise n(k) (with autocorrelation function Rn(k)). Then

xk = A0 sin(ω0k)+ n(k), (2.77)
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Figure 2.26 Step response of Eqn. 2.49 for a sinusoidal input signal with amplitude
A0 = 1, r̂0 = 0, and γ = 2 · 10−3 –6 · 10−3 in three increments, and making a step from
ω0Ts = π/5 (r = 0.81) to ω0Ts = 2π/5 (r = 0.31). The dotted lines are the final values
given by Eqn. 2.73

and we get

lim
γ↓0

[ lim
k→∞

r̂(k)] = A0
2 cos ω0Ts + 2Rn(Ts)

A0
2 + 2Rn(0)

. (2.78)

Equation 2.78 shows that if Rn(Ts) and Rn(0) are known, or can be estimated, the esti-
mation of r̂ can be easily improved.

To demonstrate the tracking behaviour of Eqn. 2.49, in Fig. 2.26 the step response is
plotted for a sinusoidal input signal, making a change in frequency, for various values
of γ . It appears that the time constants correspond well with the values predicted by
Eqn. 2.74. The values of γ used in Fig. 2.26 are just for illustration purposes, and in
practice they could be much larger. To obtain stability, we need |1− βkγ | < 1. Practical
values for sinusoidal input signals are 0 < A0γ < 0.5.

Using the same procedure as for tracking frequency, we can track the amplitude A0 of
the input signal as well. To that end, β and δ are modified into

β ′k = 1− r2
k , (2.79)

and

δ′k = x2
k−1 − xkxk−2. (2.80)
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Using Eqn. 2.66, we get

A(k) = (1− γβ ′k)A(k − 1)+ γ δ′k, (2.81)

and, finally, we get A0 =
√

A(k).

2.5 SUBJECTIVE PERFORMANCE OF LOW-FREQUENCY
PSYCHOACOUSTIC BANDWIDTH EXTENSION
ALGORITHMS

There is little published data on the subjective quality of low-frequency psychoacoustic
BWE systems, although from informal listening it is known that well-designed systems
can yield good-quality sound. Here, we shall discuss the results of a formal listening test,
parts of which was also published in Larsen and Aarts [156]. First we present the results
from two other studies.

2.5.1 ‘VIRTUAL BASS’

Performance of ‘Virtual Bass’ system In Gan et al. [83], a low-frequency psychoacous-
tic BWE algorithm is presented, called ‘Virtual Bass’. They also report results from human
subject testing, which was performed in the following manner. Ten naive subjects were
used in an age group of 24 to 35 years old. Three test signals were employed: a sequence
of gunshots, a bass guitar soundtrack, and classical music. Three loudspeakers were used:
a high-quality two-way monitor (5” cone; 68–20,000 Hz; 30 W), a multi-media speaker
(3” cone; 110–15,000 Hz; 6 W), and a flat-panel speaker (150–20,000 Hz; 3.6 W). The
authors did not mention whether the subjects could see the speaker that was being used;
if so, this might have biased the results. For each signal that was tested, subjects first
heard the unprocessed signal as a reference (presumably using the monitor speaker), fol-
lowed by the processed signal using either the ‘Virtual Bass’ algorithm or a commercially
available system (unspecified). The subjects were then asked to grade both bass quality
and signal impairment on a five-grade scale as in Table 2.3. Bass quality was judged as
good for both the ‘Virtual Bass’ and the commercial bass system, with a slight advantage
for the ‘Virtual Bass’ system. The impairment ratings were a bit lower for the ‘Virtual
Bass’ than for the commercial bass system, however. The average impairment was 3.67
for ‘Virtual Bass’ and 4 for the commercial bass system. The impairment of the ‘Virtual

Table 2.3 Five-grade quality and impairment
scale used by Gan et al. [83]

Grade Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible, not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying
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Bass’ signals were reported as a humming pitch, attributed to the method of harmonics
generation (modulating function). These artefacts were more audible in the better-quality
monitor speakers than in the other two reproduction systems. This is favourable consid-
ering that low-frequency psychoacoustic BWE will typically not be used in good-quality
speakers with extended low-frequency response.

Cross-talk cancellation application Tan et al. [261] use the ‘Virtual Bass’ algorithm of
Gan et al. [83] in a cross-talk cancellation method. In cross-talk cancellation, the objective
is to eliminate sound from the left loudspeaker reaching the right ear and sound from the
right loudspeaker reaching the left ear. This is important for virtual audio applications
using loudspeakers. The use of headphones in virtual audio applications would not require
the use of cross-talk cancellation.

Tan et al. argue that the low interaural level difference (ILD) for low-frequency sounds
makes cross-talk cancellation difficult, because it requires inversion of an ill-conditioned
matrix. Even if cross-talk cancellation is possible, the required boosting of low frequencies
will cause problems in the loudspeakers because of large cone excursion and power-
handling capacity. They propose to circumvent these problems by using a low-frequency
psychoacoustic BWE system to replace very low frequencies by higher harmonics, for
which it is easier to cancel the cross-talk. A subjective test was performed with two
different signals, at two different phantom source azimuths (45 and 90◦ relative to straight
ahead); ten subjects were used. The quality was determined by ranking on a five-grade
scale (different from the one used in Table 2.3). The phantom sources at 90◦ received
slightly higher scores (about 0.4–0.5 points). We performed a t-test for the two samples
(different azimuths) of each signal and found no significant difference between the means
at the 10% significance level, however. In fact, the reference condition, which consisted
of a cross-talk system without the ‘Virtual Bass’ processing, did not differ significantly
at the 5% significance level from any of the conditions tested with the ‘Virtual Bass’
system (only one of the signals at 90◦ azimuth had a significantly different mean at the
10% level), as was determined by t-tests for each condition.

2.5.2 ‘ULTRA BASS’

In Larsen and Aarts [156], a discussion was presented on the results of a listening test
that was conducted to assess the subjective quality of two low-frequency psychoacoustic
BWE systems (‘Ultra Bass’). Here, some of this discussion is repeated, together with
some new analysis.

The experiment had three objectives:

1. To rank order preference for unprocessed, linearly amplified (bass only), and BWE-
processed musical signals.

2. To evaluate if preferences vary per subject.
3. To evaluate if preferences vary per repertoire.

Algorithms tested In the following text, we will refer to four different algorithms, which
are as follows:



Psychoacoustic Bandwidth Extension for Low Frequencies 99

1. Unprocessed signal, which was included as reference against which the processed
signals would be compared.

2. Linear amplification, which is considered to yield ‘baseline’ performance for bass
enhancement. The quality of the two BWE systems should at least match but preferably
exceed the quality of the linear system.

3. Low-frequency psychoacoustic BWE system with rectifier as NLD.
4. Low-frequency psychoacoustic BWE system with integrator as NLD. This and the

previous algorithm were chosen because from informal listening it was observed that
the quality of the processed signals is quite different for the two cases (which is not
surprising given the analysis in Secs. 2.3.2.2 and 2.3.2.3).

The linear amplification was done with commercial sound-editing software, using a
graphic EQ in 1/2-octave bands. The amplification was 6 dB (44 Hz), 9 dB (62.5 Hz),
9 dB (88 Hz), and 6 dB (125 Hz); these values were chosen to give maximum bass boost
without creating audible distortion at the reproduction level used in the experiment. The
processing was identical for the two BWE systems, except for the implementation of
the NLD. Filter 1 was implemented as a second-order Chebyshev-type I IIR filter; pass-
band ripple was 1 dB, and the passband was 20–70 Hz. Filter 2 was implemented as a
third-order elliptic IIR filter (also non-linear phase), passband ripple of 3 dB, stopband
attenuation of 30 dB and passband of 70–140 Hz. The gain value for the harmonics signal
was fixed at 15 dB, for both BWE systems. The signal in the main path was not processed
(no high-pass filter, no delay). The implementation of the BWE systems as used in the
test is now known to be suboptimal; particularly, the use of non-linear-phase IIR filters
would be avoided in favour of using linear-phase filters.

Music selection, signal generation, and reproduction Music was selected according to
genre and an a priori evaluation of subjective quality. Genres were pop and rock, and
subjective quality criteria were that the bass content of the signals should be ‘difficult’
to reproduce well on a small loudspeaker system. This approach was taken so that the
obtained results would indicate performance of some of the most demanding signals.
Excerpts (≈10 s duration) from the following four tracks were used:

1. ‘Bad’ by Michael Jackson. This track contains a typical pop bass line, which was
known to give good subjective performance after BWE processing. It was included to
contrast the other, more demanding, signals.

2. ‘My Father’s Eyes’ by Eric Clapton. A very deep and strong bass line accompanies
the music on this track, which may sound too imposing if the reproduced bass is not
well balanced.

3. ‘Hotel California’ by The Eagles (live version). The excerpt was from the start of
the track, which consists of a bass drum only (and some audience noise). This makes
it easier to focus on the bass quality. The difficulty in reproduction lies in the low
frequency and very fast attack of the drum. Also, the decay is very gradual and should
not sound unnatural.

4. ‘Twist and Shout’ by Salt n’ Peppa. In this track, the bass follows a tight beat, the
main difficulty being to preserve the tight temporal envelope.
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These four signals were processed by each of the three algorithms as described previously,
and the test included the unprocessed signals as well. Prior to processing, all four test
signals were scaled to obtain approximately equal loudness.

Reproduction was on a commercially available medium-sized Hi-Fi system. The low
cut-off frequency was about 140 Hz. Listeners were seated at a distance of about 1 m in
the median plane between two loudspeakers. Reproduction was at a comfortable listening
level, and was fixed prior to the start of the experiment, being the same for all subjects.

Human subjects Fifteen unpaid volunteers (eleven male, four female) participated in
the experiment. The age range was 25–30 years old. All had self-reported good hearing,
varying degrees of experience in listening tests, and varying degrees of interest in music.
Subjects were asked to indicate their preferred genres of music, which were pop and rock.

Experimental procedure A direct ranking of the various processed signals would be
difficult, and the paired comparison paradigm was chosen because it is known to yield
good results when used to compare several perceptually close signals (David [56]). Thus,
a pair of signals (same repertoire, different processing) would be presented, and listeners
were instructed to choose the version with the best bass quality. Although this allows the
possibility that different listeners use different criteria in their selection, this was done to
obtain general preference ratings; furthermore, one of the objectives was to find out if
there would be differences in preferences among subjects. Instructing listeners to choose
on the basis of the ‘best bass quality’ should meet both these objectives. Subjects could
listen to the pair of the signals as long as was required to make a selection. Because
each repertoire had four versions, six pairs were presented to the listener. After the six
presentations, the next repertoire was used, until all four repertoire were completed. There
were no repetitions, as in most cases the signal pair presented on any trial differed enough
to be distinguishable, and we did not expect listeners to change their preference during
the course of the experiment. Some listeners had prior exposure to signals processed by
the BWE system.

The responses were recorded in preference matrices P (one for each repertoire); P is
an anti-symmetric 4×4 matrix with elements pij = {0, 1}, a 1 indicating that the column
element i is preferred over the row element j , and vice versa. The diagonal elements
are not used. The preference matrix can be summarized in a score vector s, which is a
column vector, the elements of which are the sum of the rows of P . The ranking of the
different algorithms then follows directly from s.

Results Table 2.4 gives the score vectors for all subjects, for each repertoire (numbered
as indicated previously). Also, the number of circular triads is shown (CT) (Levelt et al.
[159]). A circular triad occurs if, for example, version 2 is preferred over 3, 3 is preferred
over 4, and 4 is preferred over 2; this indicates an inconsistency in the subject responses.
A high value for CT probably indicates that the task is confusing, and would necessitate
caution in interpretation of the results. As Table 2.4 shows, for most subjects CT is zero
or one, which is normal.

For a preliminary analysis of the results, we plotted the normalized score of each algo-
rithm, averaged over the four repertoire, for each subject; see Fig. 2.27. The normalized
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Table 2.4 Score vectors obtained in the listening test. The fifteen subjects are labeled A–O. CT
indicates the number of circular triads

v A B C D E F G H I J K L M N O Total

Bad 1 0 0 0 0 3 0 2 0 0 1 0 0 1 0 0 7
2 2 2 3 1 2 1 3 1 2 2 2 2 3 1 1 28
3 1 2 2 2 1 3 0 3 2 2 2 3 0 3 3 26
4 3 2 1 3 0 2 1 2 2 1 2 1 2 2 2 26

Eyes 1 1 0 3 1 3 0 3 0 0 0 0 0 2 1 2 15
2 1 2 1 2 1 1 2 1 3 2 1 2 2 2 3 26
3 1 2 0 1 0 2 1 3 1 2 2 2 0 0 1 18
4 3 2 2 2 2 3 0 2 2 2 3 2 2 3 0 30

Hotel 1 0 1 2 1 2 0 1 0 1 0 2 1 1 1 1 14
2 1 2 3 3 3 1 2 1 2 2 0 2 2 3 3 30
3 2 3 1 2 1 3 3 3 3 2 3 3 3 2 1 35
4 3 0 0 0 0 2 0 2 0 2 1 0 0 0 1 11

Twist 1 0 0 2 0 2 0 2 0 0 2 1 0 0 0 0 9
2 2 2 3 1 3 1 3 1 1 3 1 2 1 2 1 27
3 2 1 0 2 0 3 1 3 3 1 1 3 3 2 3 27
4 2 3 1 3 1 2 0 2 2 0 3 1 2 2 2 26

Total 1 1 1 7 2 10 0 8 0 1 3 3 1 4 2 3 45
2 6 8 10 7 9 4 10 4 8 9 4 8 8 8 8 111
3 6 8 3 7 2 11 5 12 9 7 8 11 6 7 8 106
4 11 7 4 8 3 9 1 8 6 5 9 4 6 7 5 93

CT 2 2 0 1 0 0 0 0 1 3 2 1 1 1 1 –

score was obtained as the sum of corresponding elements of the subject’s four score
vectors, for example, element 1 for the unprocessed version of each signal, divided by
12. In this way, the normalized score varies between 0 and 1. The subjects have been
divided into two groups, A (subjects 3, 5, and 7) and B (all others); later on, we will
motivate this division. For now we merely notice that, for each algorithm, the mean score
assigned by groups A and B is different. Group A rates the unprocessed and linearly
amplified signals higher than both BWE-processed signals; for group B, all three pro-
cessing algorithms have scored approximately the same, while the unprocessed version
gets a low score. Table 2.5 gives the mean normalized score for each algorithm, for both
groups as well as overall (mean over groups). On the basis of Table 2.5, for group A
the rank order of the algorithms would be: (1) linear amplification, (2) no processing,
(3) BWE with rectifier, and (4) BWE with integrator. For group B, the rank order would
be: (1) BWE with rectifier, (2) BWE with integrator, (3) linear amplification, and (4) no
processing.

Discussion Division of subjects in two groups (A and B) can be made plausible by
visualizing the subjects’ responses with multidimensional scaling (MDS), see App. A.
Fig. 2.28 shows the resultant two-dimensional mapping obtained using as proximities the
Euclidian distances between score vectors (which are four dimensional). Subjects have
been divided into five clusters, S0–S4. The previously mentioned group A corresponds to
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Figure 2.27 Normalized scores for each algorithm (a: unprocessed, b: linear gain,
c: BWE with rectifier, and d: BWE with integrator), for each subject. The subjects were
divided into two groups and plotted with different symbols (o, x). At the right-hand side
of each graph, the means and standard deviation of each subject group is indicated

Table 2.5 Normalized score vectors for the four
algorithms, which may be used for subjective qual-
ity ranking. Groups A and B are different subject
groups, as defined in the text. The ‘overall’ numbers
are weighted averages of the two group values

A B Overall

1 0.69 0.15 0.26
2 0.81 0.57 0.62
3 0.28 0.69 0.61
4 0.22 0.59 0.52

cluster S2 of Fig. 2.28; group B corresponds to the other four clusters. The division into
groups A and B is now obvious, as Fig. 2.28 shows that the MDS maps subjects in group
A (cluster S2) far away from all the other subjects. By inspecting the subject’s individual
responses from Table 2.4, we can interpret the MDS dimensions. The horizontal dimen-
sion seems to indicate preference for BWE processing, with higher preference towards the
right-hand side. The vertical dimension seems to indicate preference for NLD type, with
integrator towards the top and rectifier towards the bottom. In Larsen and Aarts [156],
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Figure 2.28 Two-dimensional scaling of subject (A–O) preferences of a subjective com-
parison between various bass enhancement systems. Interpretation of the two dimensions
is made in the text. Subjects were grouped in five clusters. Group A mentioned in the
text, and in Fig. 2.27 and Table 2.5 corresponds to cluster S2 here. Group B corresponds
to the other four clusters. From Larsen and Aarts [156]

results were further analysed with biplots (Gabriel [81]), which showed that the two BWE
systems were judged most similar, and the linear system versus BWE with integrator were
judged most dissimilar. Conclusion It appears that there is no consistent judgement from
the whole subject group regarding preference for a particular processing type. Out of
15 subjects, 3 preferred a linear bass enhancement system, while the other 12 preferred
low-frequency psychoacoustic BWE processing. Within these 12 subjects, there was no
clear preference for a rectifier or integrator as NLD, although the rectifier did receive a
somewhat higher average appreciation. On the basis of this experiment and the response
of all subjects taken as a whole, the main conclusion is that low-frequency psychoacous-
tic BWE can perform at least as well as linear systems. More recent developments in
low-frequency psychoacoustic BWE methods, such as adaptive clipping (Sec. 2.3.2.4) or
frequency tracking (Sec. 2.4) have shown superior performance in informal evaluations
and may show a more conclusive benefit to linear bass enhancement systems in formal
listening tests.

2.6 SPECTRAL CHARACTERISTICS OF NON-LINEAR DEVICES

In Sec. 2.3.2, intermodulation characteristics of non-linear devices were analysed. For
the rectifying and integrating NLDs, expressions were given for the Fourier series coef-
ficients of processed signals, given the Fourier series coefficients of the input signals.
Sections 2.6.1 and 2.6.2 will present the full derivation of these expressions, originally
published in Larsen and Aarts [156], and were largely due to A.J.E.M. Janssen. Discrete-
time expressions are given in Sec. 2.6.3, and in Sec. 2.6.4 the Fourier series coefficients
of a clipped sinusoid are given.
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Consider a real periodic signal f (t) of period T0 = 1/f0 and assume that

•
f (ti) = 0, i = −1, 0, . . . , N, (2.82)

f (t) �= 0, t �= ti , (2.83)

thereby defining the zeros of f (t) during a one-period interval; t−1 is defined as the
beginning of the period, and tN as the end of the period (which is identical to t−1 of the
next period). There are N ≥ 1 zero crossing in between t−1 and tN, and tN− t−1 = T0.
We use the shorthand notation t = (t−1, . . . , tN)T . Figure 2.29 illustrates the above
notation.

• f (t) changes sign at every ti , which implies that N is odd.
• f ′(t−1) > 0.
• f (t) is sufficiently smooth such that its Fourier coefficients an decay at a rate of at

least 1/n2. This will be satisfied if, for instance, f (t) is at least twice continuously
differentiable.

We have for f (t) the Fourier series representation

f (t) =
∞∑

n=−∞
anei2πf0nt , (2.84)
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−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

t−1

t0 t4

t1

t2

t3
t5

Figure 2.29 A signal with a period of 34 ms (f0 ≈ 30 Hz) has several zero crossings in
the periodicity interval. The zero crossings for one period are indicated using the notation
of this section: t−1 indicates the start of the period, and t5 indicates the end of the period.
There are five intermediate zero crossings. Note that t5 ≡ t−1 of the next period
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where an = a∗−n, because f (t) is real. The output signal of the rectifying NLD is denoted
by g(t), which has the Fourier series representation

g(t) =
∞∑

n=−∞
bnei2πf0nt , (2.85)

with of course also bn = b∗−n. The objective is to express the bn in terms of the an.

2.6.1 OUTPUT SPECTRUM OF A RECTIFIER

On the periodicity interval [ t−1, tN), the function g(t) is given by

g(t) = |f (t)|, (2.86)

which can also be written as

|f (t)| = f (t)h(t; t) (2.87)

where

h(t; t) =




1 for t−1 ≤ t < t0,

−1 for t0 ≤ t < t1,
...

...

(−1)N = −1 for tN−1 ≤ t < tN.

(2.88)

Let dn be the Fourier coefficients of h(t), so

d0 = 1+ 2f0

N∑
k=0

(−1)ktk, (2.89)

dn = − 1

iπn

N∑
k=0

(−1)ke−i2πf0ntk , n �= 0. (2.90)

From the foregoing

g(t) =
∞∑

n=−∞
anei2πf0nt ×

∞∑
m=−∞

dmei2πf0mt =
∞∑

k=−∞
ei2πf0kt ×

∑
n+m=k

an dm, (2.91)

and therefore

bk =
∞∑

n=−∞
an dk−n. (2.92)
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Combining all the previous results

bk =
(

1+ 2f0

N∑
m=0

(−1)mtm

)
ak −

∑
n�=k

an

iπ(k − n)

N∑
m=0

(−1)mei2πf0(n−k)tm . (2.93)

Having expressed the bk in terms of the ak (also using the locations of the zeros of f (t)),
the problem is solved in principle. However, the right-hand side of Eqn. 2.93 exhibits a
decay of the bk roughly as 1/k, while the form of g(t) suggests that there should be a
decay like 1/k2, due to the triangular singularities at the ti . This decay of the bk can be
made explicit by properly using the condition stated in Eqns. 2.82 and 2.83. Accordingly,

∞∑
n=−∞

anei2πf0ntm = 0. (2.94)

Then the series at the far right-hand side of equation 2.93, for k �= 0, becomes

∑
n�=k

an

iπ(k − n)

N∑
m=0

(−1)mei2πf0(n−k)tm =
∑
n�=k

an

iπ

(
1

k−n
− 1

k
+ 1

k

) N∑
m=0

(−1)mei2πf0(n−k)tm

=
∑
n�=k

nan

iπk(k − n)

N∑
m=0

(−1)mei2πf0(n−k)tm +

1

iπk

∑
n�=k

an

N∑
m=0

(−1)mei2πf0(n−k)tm . (2.95)

And also

∑
n�=k

anei2πf0(n−k)tm = −ak +
∞∑

n=−∞
anei2πf0(n−k)tm

= −ak + e−i2πf0ktm

∞∑
n=−∞

anei2πf0ntm

= −ak. (2.96)

Hence for k �= 0, the second term of Eqn. 2.95 vanishes, and

b0 = f0

∫ tN

t−1

|f (t)| dt, (2.97)

bk =
(

1− 2f0

N∑
m=0

(−1)mtm

)
ak −

∑
n�=k

nan

iπk(k − n)

N∑
m=0

(−1)mei2πf0(n−k)tm . (2.98)
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The right-hand side of Eqn. 2.98 does exhibit the correct 1/k2 behaviour that is expected
from the bk’s for large k. More precisely, assuming that ak = 0 for large k, this becomes
(for large k)

∑
n�=k

nan

iπk(k − n)

N∑
m=0

(−1)mei2πf0(n−k)tm ≈ 1

k2

∞∑
n=−∞

nan

iπ

N∑
m=0

(−1)mei2πf0(n−k)tm . (2.99)

Since

f ′(t) =
∞∑

n=−∞
i2πf0nanei2πf0nt , (2.100)

this can be written as

∑
n�=k

nan

iπk(k − n)

N∑
m=0

(−1)mei2πf0(n−k)tm

≈ 1

k2

1

iπ

1

i2πf0

∞∑
n=−∞

i2πf0nan

N∑
m=0

(−1)mei2πf0(n−k)tm

= − 1

2π2f0k2

N∑
m=0

(−1)mf ′(tm)e−i2πf0ktm. (2.101)

Thus, if ak = 0 for large k, then for large k

bk ∼ 1

2π2f0k
2

N∑
m=0

(−1)mf ′(tm)e−i2πf0ktm. (2.102)

It appears that the spectrum of g(t) ≡ |f (t)| at high frequencies is mainly determined by
the slope of f (t) at its zero crossings.

2.6.2 OUTPUT SPECTRUM OF INTEGRATOR

Now we consider the integrating NLD; under the same assumptions as in Sec. 2.6.1, we
get on the periodicity interval [ t−1, tN)

g(t) =




∫ t

t−1
|f (s)| ds, t−1 ≤ t < t1,

−α0 +
∫ t

t−1
|f (s)| ds, t1 ≤ t < t3,

...
...

−[α0+ . . . +α(N−1)/2]+ ∫ t

t−1
|f (s)| ds, tz−2 ≤ t < tz.

(2.103)
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The αi are the ‘jumps’ of g(t) at the ‘resetting moments‘, and are given by (k ∈ Z)

−α0 = −
∫ t1

t−1

|f (s)| ds at time t = k/f0 + t1,

−α1 = −
∫ t3

t1

|f (s)| ds at time t = k/f0 + t3, (2.104)

...
...

−α(N−1)/2 = −
∫ tz

tz−2

|f (s)| ds at time t = k/f0 + tN.

The above notation is illustrated in Fig. 2.30. For t �= t−1, t1, t3, . . . tz, we have g′(t) =
|f (t)|, thus

g′(t) = |f (t)| −
(N−1)/2∑

m=0

αm

∞∑
n=−∞

δ(t − n/F0 − t2m+1). (2.105)
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Figure 2.30 A signal with a period of 34 ms (f0 ≈ 30 Hz) has several zero crossings in
the periodicity interval, leading to three ‘resets’ to 0 for one period of the output signal.
The signal shown here is the result of applying the integrating non-linearity to the signal
shown in Fig. 2.29. The magnitude of the resets, that is, the local maxima of the output
signal, is indicated using the notation of this section
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Denoting the Fourier coefficients of |f (t)| by ck , so that

|f (t)| =
∞∑

k=−∞
ckei2πF0kt , (2.106)

and using
∑∞

n=−∞ δ(t − n/F0 − t2m+1) = ∑∞
k=−∞ ei2πF0k(t−t2m+1), we can write

Eqn. 2.105 as

∞∑
k=−∞

i2πF0 kbkei2πF0kt =
∞∑

k=−∞


ck −

(N−1)/2∑
m=0

αme−i2πF0kt2m+1


 ei2πF0kt , (2.107)

so that

bk =
ck −

∑(z−1)/2
m=0 αme−2πiν0kt2m+1

2πiν0k
k �= 0. (2.108)

The bk show a decay of roughly 1/k, which is what we expect owing to the discontinu-
ities of g(t) at t−1, t1 . . . tN. The ck can be found as the bk of Eqn. 2.98. For k = 0 we
get, with partial integration,

b0 =
∫ tN

t−1

g(t) dt

= [ tF (t)]tNt−1
−
∫ tN

t−1

t


|f (t)| −

(z−1)/2∑
m=0

αm

∞∑
n=−∞

δ(t − n/G0 − t2m+1)


 dt

= −
∫ tN

t−1

t |f (t)| dt +
(N−1)/2∑

m=0

αmt2m+1. (2.109)

2.6.3 OUTPUT SPECTRA IN DISCRETE TIME

For low-frequency psychoacoustic BWE applications, the frequencies of interest are orders
of magnitude lower than the sample rate, such that continuous-time expressions, as we
have used until now, are good approximations to the discrete-time expressions that actually
should be used. However, for other BWE applications (notably high-frequency BWE
treated in Chapters 5 and 6), the frequencies of interest can be in the same order of
magnitude as the sample rate, and in such cases the proper discrete-time expressions must
be used. These expressions can be developed along the same lines as the continuous-
time expressions, and we therefore only give results, for the clipping and integrating
non-linearity.

For this section, we use square brackets to index the variables, for example, as f [n]
instead of f (t). We assume that f [n] is periodic, with a period of N samples, sampled
at a rate fs = 1/�t . Zero crossings are defined by the sequence x[n] from f [n] as

x[n] =
{

1 for f [n] ≥ 0,

0 for f [n] < 0.
(2.110)
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We define I [n] to be the indicator of the event x[n] �= x[n− 1]; if x[n] �= x[n− 1], then
I [n] = 1, else I [n] = 0. Now, we will define a zero crossing in f [n] to occur for n = n′
if I [n′] = 1. Further assume that

•

I [n−1] = I [n0] = I [n1] = . . . = I [nz] = 1, (2.111)

I [n] = 0, n �= n−1, n0, n1 . . . nz. (2.112)

where all n0,1...z−1 ∈ (n−1, nz). Thus, f [n] has z zero crossings in the interval
(n−1, nz), and owing to the periodicity requirements on f [n], z must be uneven;
furthermore, nz − n−1 = N and z ≥ 1.

• We choose f [n−1 + 1]− f [n−1] > 0.

We have for f [n] the Fourier series representation

f [n] = 1

N

N−1∑
k=0

a[k]e2πikn/N, (2.113)

and because f [n] is real we have a[k] = a∗[−k]. We consider the real periodic time series
F [n], derived by some non-linear operation from f [n]. We have for F [n] the following
Fourier series representation

F [n] = 1

N

N−1∑
k=0

b[k]e2πikn/N, (2.114)

and again b[k] = b∗[−k]. Now the problem is again to express the b[k] in the a[k].
In the limit that the sampling frequency tends to infinity, the discrete-time expressions
are expected to equal the continuous-time expressions (this is indeed the case, as can be
checked by setting lim�t↓0 and replacing sums by integrals for the given discrete-time
expressions). Note that due to the assumptions, specifically the assumption of periodicity,
the derived results have limited applicability. This is because a periodic signal, when
sampled, is only periodic if the sample rate and the signal’s fundamental frequency have
a greatest common divisor (GCD), in which we allow for non-integer arguments. If the
GCD exists, it determines the periodicity of the sampled signal (N as mentioned above),
which can thus be much longer than the periodicity of the continuous signal. For example,
a 7-Hz pure tone (periodicity 0.144 s) sampled at 19 Hz (GCD is 1), has a periodicity
of 1 s. In other cases, the periodicity interval can be extremely long (or non-existent)
such that practical signals are not stationary within such time intervals. Nonetheless, the
derived expressions have an academic use in that they can be used to assess output spectra
for specifically chosen signals that have short periodicity. We may then expect that the
conclusions from these output spectra can be used more generally.
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2.6.3.1 Rectifier

For the rectifier, F [n] is given by

F [n] = |f [n]|, (2.115)

which leads to

b[k] =
(

1+ 2

N

z∑
m=0

(−1)mnm

)
a[k]+ (2.116)

1

N

∑
n�=k

a[n]
z∑

m=0

(−1)me−πi(nm−1+nm−1)(k−n)/N sin π(nm − nm−1)(k − n)/N

sin π(k − n)/N
.

2.6.3.2 Integrator

On the periodicity interval [n−1, nz), we get

F [n] =




�t
∑n

k=n−1
|f [k]|, n−1 ≤ n < n1,

−�t
∑n1−1

k=n−1
|f [k]| +�t

∑n
k=n−1

|f [k]|, n1 ≤ n < n3,

...
...

−�t
∑nz−2−1

k=n−1
|f [k]| +�t

∑n
k=n−1

|f [k]|, tz−2 ≤ t < tz.

(2.117)

Defining αm as

αm = �t

n1+2m−1∑
k=n−1+2m

|f [k]|, (2.118)

we have

b[k] = �t
c[k]−∑(z−1)/2

m=0 αme−2πikn2m+1/N

1− e−2πik/N
, k �= 0. (2.119)

The c[k] can be found as the b[k] of Eqn. 2.116. For k = 0 we get, with partial summa-
tion3,

b[0] =
nz−1∑

k=n−1

F [k]

3
Let

∑∞
n=0 a[n] be a series of which s[n] (n ∈ N) is the sequence of partial sums, and let b[n] be a sequence.

Then ∀ n ∈ N we have that

∑N2
n=N1

a[n]b[n] =∑N2
n=N1

s[n](b[n] − b[n+ 1])+ s[N2]b[N2 + 1] − s[N1 − 1]b[N1].



112 Audio Bandwidth Extension

=
nz−1∑

k=n−1

(k + 1){−�t |f [k + 1]| +

�t

(z−1)/2∑
m=0

αm

∞∑
l=−∞

δ[k + 1− lN − n2m+1]} +�t(nz|f [nz]| − n−1|f [n−1]|)

= −�t

nz−1∑
k=n−1

k|f [k]| +�t

(z−1)/2∑
m=0

αmn2m+1. (2.120)

2.6.4 OUTPUT SPECTRUM OF CLIPPER

Consider a real-valued, 2π-periodic signal f (x), given in Fourier series form as

f (x) =
∞∑

n=−∞
aneinx, (2.121)

with

an = 1

2π

∫ 2π

0
f (x)e−inx dx, (2.122)

where the complex Fourier coefficients an satisfy a−n = a∗n , n ∈ Z. Furthermore, assume
a number lc > 0 ∈ IR (the clipping level), and the set

{x ∈ [0, 2π] | |f (x)| ≤ lc} (2.123)

in the form

K⋃
k=1

[αk, βk], (2.124)

where the [αk, βk] ⊂ [0, 2π] are pairwise disjoint intervals, as shown in an example in
Fig. 2.31.

Let

flc (x) =



f (x), |f (x)| ≤ lc,

lc, f (x) ≥ lc,

−lc, f (x) ≤ −lc,

(2.125)

which is the clipped version of f at clipping level lc. We want to compute the Fourier
coefficients

bn = 1

2π

∫ 2π

0
flc (x)e−inx dx, n ∈ Z. (2.126)
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Figure 2.31 The function f (x) = sin(x) + sin(4x) vs. x. The heavy portions of the
x -axis indicate the intervals [α, β] where |f (x)| ≤ lc, where in this case lc = 0.5

Note that

f ′lc (x) =
∞∑

n=−∞
bneinx, (2.127)

hence

f ′lc (x) =
∞∑

n=−∞
inbneinx. (2.128)

On the other hand, we have

f ′lc (x) =
{

f ′(x), |f (x)| < lc,

0, |f (x)| > lc.
(2.129)

Therefore, using f (x) =∑∞
m=−∞ ameimx , we get

inbn = 1

2π

∫ 2π

0
f ′lc (x)e−inx dx = 1

2π

K∑
k=1

∫ βk

αk

f ′(x)e−inx dx

= 1

2π

K∑
k=1

∫ βk

αk

( ∞∑
m=−∞

imameimx

)
e−inx dx

= 1

2π

K∑
k=1

∞∑
m=−∞

imam

∫ βk

αk

ei(m−n)x dx
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= 1

2π

K∑
k=1

∞∑
m=−∞

imam

ei(m−n)βk − ei(m−n)αk

i(m− n)
. (2.130)

Here, we have introduced the convention that for ξ = 0

eiξβ − eiξα

iξ
= β − α, (2.131)

which is correct in the limit and gives the same answer as treating the m = n case
separately in Eqn. 2.130. It thus follows that for n �= 0

bn = 1

2πn

K∑
k=1

∞∑
m=−∞

mam

ei(m−n)βk − ei(m−n)αk

i(m− n)
. (2.132)

For n = 0, we find more directly

b0 = 1

2π

∫ 2π

0
flc (x) dx = 1

2π

K∑
k=1

∫ βk

αk

f (x) dx + lc

2π
|S+| − lc

2π
|S−|, (2.133)

where |S+| and |S−| are the sizes of the sets

S+ = {x ∈ [0, 2π] | f (x) ≥ lc}, S− = {x ∈ [0, 2π] | f (x) ≤ −lc}, (2.134)

which should be available also. Note that the first number at the far right-hand side of
Eqn. 2.133 can be expressed in terms of the an as

1

2π

K∑
k=1

∫ βk

αk

f (x) dx = 1

2π

K∑
k=1

∫ βk

αk

∞∑
m=−∞

ameimx dx

= 1

2π

K∑
k=1

∞∑
m=−∞

am

eimβk − eimαk

im
. (2.135)

Example Using the preceding method, we will calculate the Fourier coefficients of a
clipped sine sinlc (x). Let

f (x) = sin x = eix − e−ix

2i
,

a±1 = ±1

2i
, all other am = 0,

lc ∈ (0, 1),

α = arcsin lc ∈ (0, π/2). (2.136)

{x ∈ [0, 2π] | |f (x)| ≤ a} = [0, α] ∪ [π − α, π + α] ∪ [2π − α, 2π]. (2.137)
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Then we get

bn = 1

2πn

∞∑
m=−∞

mam

{
ei(m−n)α − 1

i(m− n)

+ ei(m−n)(π+α) − ei(m−n)(π−α)

i(m− n)
+ 1− ei(m−n)(2π−α)

i(m− n)

}
(2.138)

= 1

2πn

∞∑
m=−∞

mam

{
ei(m−n)α − e−i(m−n)α

i(m− n)
+ (−1)m−n ei(m−n)α − e−i(m−n)

i(m− n)

}
(2.139)

= 1

2πn

∞∑
m=−∞

mam.
2 sin(m− n)α

m− n
(1+ (−1)m−n). (2.140)

Using Eqn. 2.136, we then get

bn = 1

2πn

{
sin(1− n)α

i(1− n)
(1+ (−1)1−n)+ sin(1− n)α

i(1 − n)
(1+ (−1)−1−n)

}
(2.141)

= 1+ (−1)n−1

2πin

(
sin(n− 1)α

n− 1
+ sin(n+ 1)α

n+ 1

)
, (2.142)

and finally

bn =
{

1
πi(2�+1)

(
sin 2�α

2�
+ sin(2�+2)α

2�+2

)
, n = 2�+ 1, � ∈ Z,

0, n = 2�, � ∈ Z.
(2.143)

Using b−2�−1 = −b2�+1, we thus find

sinlc (x) =
∞∑

�=−∞
b2�+1ei(2�+1)x =

∞∑
�=−∞

(b2�+1ei(2�+1)x + b−2�−1e−i(2�+1)x) (2.144)

=
∞∑

�=−∞
b2�+12i sin(2�+ 1)x = 1

π

∞∑
�=0

(
sin 2�α

�
+ sin 2(�+ 1)α

�+ 1

)
sin(2�+ 1)x

2�+ 1
.

(2.145)





3
Low-frequency Physical
Bandwidth Extension

3.1 INTRODUCTION

Chapter 2 discussed the situation in which the audio signal has a wider low-frequency
bandwidth than the loudspeaker. The opposite situation, in which the loudspeaker has a
wider bandwidth than the audio signal, can also occur (although this is probably a less
common situation). Consider two possibilities:

1. The audio signal was limited in bandwidth owing to the transmission (or storage)
channel. In that case, BWE processing should restore, or resynthesize, the missing
frequency components as closely as possible. For speech, this occurs during transmis-
sion through the telephone network, together with a limitation in the high-frequency
bandwidth. Methods to address both the high- and low-frequency limitation for speech
applications will be discussed in Chapter 6. For general audio applications other than
telephony, this situation is not a common one, and as such it will not further be
discussed.

2. The audio signal is full bandwidth (at the low-frequency end) and the additional low
frequencies are desired for enhancement only, in which case the loudspeaker must
have a suitably low cut-off frequency. Applications of such methods would be, for
example, (home) cinema, Hi-Fi, and automotive audio. We will devote the remainder
of this chapter to a discussion of this situation.

In most cases, the algorithms for these applications physically extend the low-frequency
spectrum of the signal; therefore, we refer to this kind of BWE methods as low-frequency
physical BWE methods. Because the loudspeaker is able to reproduce lower frequencies
than those present in the audio signal, there is a possibility to lower the perceived pitch.

3.2 PERCEPTUAL CONSIDERATIONS

Assume that a signal x(t) has a low-frequency cut-off of fl,x , and the reproducing loud-
speaker has a low-frequency cut-off of fl,l < fl,x . To increase the apparent bass response

Audio Bandwidth Extension E. Larsen and R. M. Aarts
 2004 John Wiley & Sons, Ltd ISBN 0-470-85864-8
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of the perceived signal, we can utilize the frequency range fl,l –fl,x to add frequency
components related to x(t). These lower-frequency components can lower the pitch of
the signal, which can be used for bass enhancement.

3.2.1 PITCH (SPECTRAL FINE STRUCTURE)

Say the signal x(t) has a pitch of f0 Hz, mediated by partials at n.f0 Hz, n = 1, 2, 3 . . . .
Reproducing x(t) at a reduced pitch of, say, f ′0 is most practical if the harmonics already
present in x(t) remain harmonically related to the added low-frequency components.
For example, f ′0 = f0/2 would be a good choice. Adding the f ′0 component to x(t)

to create signal x2(t) would yield a complex tone with a fundamental frequency at f ′0
all even harmonics. This situation also occurs in low-frequency psychoacoustic BWE
using a rectifier as non-linear device (NLD), see Fig. 2.7. In the related discussion, it was
remarked that predictions from the auditory image model (AIM [203], see Sec. 1.4.8)
indicated two pitch percepts of nearly equal strength. In the notation of this section, there
is a pitch at f ′0, and slightly weaker, at f0. This could indicate that either the pitch is
ambiguous or that the new fundamental at f ′0 is not grouped with the harmonics, leading
to two signals being perceived. Note that a common amplitude or frequency modulation
of the f ′0 partial and the n.f0 partials should facilitate grouping of all partials into a single
stream (‘common fate’ principle, see Sec. 1.4.7).

A less ambiguous situation would occur if instead of only adding the component f ′0 =
f0/2, components at (2k + 1)f ′0 = (k + 1/2)f0 are also added (k = 1, 2, 3 . . . ). In that
case, the new signal x2(t) would contain a fundamental at f ′0 and all harmonics, akin to the
situation in which an integrating NLD is used in the low-frequency psychoacoustic BWE
algorithm; see Fig. 2.10 for the AIM pitch prediction of this signal. Such a signal has an
unambiguous and strong pitch at f ′0 (even without common amplitude and/or frequency
modulation). Another possibility is to add a frequency component at f ′′0 = f0/3, leading
to a pitch that is one-third of the original; this can be extended to a frequency division
by 4, 5, and so on. We will not further consider such situations though, and concentrate
on the case in which the pitch is lowered by an octave.

3.2.2 TIMBRE (SPECTRAL ENVELOPE)

Assume a complex tone with harmonic amplitudes ai at frequencies i.f0/2, with i even.
As before, we simplify our modelling of timbre to include only brightness1, modelled by
the spectral centroid CS (Eqn. 1.95), which for this signal is

CS = f0 ×
∑

i

ia2
i /
∑

i

a2
i , (3.1)

where the sum runs over all i for which ai �= 0. After BWE processing, harmonics
are added such that the new fundamental is f0/2, and the new harmonic amplitudes
are ai + gbi (i = 1, 2, 3, . . . ); the bi are the synthetic frequency components and are

1
In reality, other factors influence timbre, such as the relative phase of partials and temporal envelopes. These

factors are neglected to simplify the discussion, and also because they are thought to be less important than the
amplitude spectrum of the harmonics, see also Sec. 1.4.6.
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determined by the algorithmic details, and g is the gain factor of the bi . The spectral
centroid of the BWE signal C′

S is

C′
S = f0 ×

∑
i

i(ai + gbi)
2/
∑

i

(ai + gbi)
2. (3.2)

If the goal is to achieve CS = C′
S, and say the bi are identically zero for nonzero ai , and

vice versa, then this is achieved if∑
i ib2

i∑
i b2

i

=
∑

i ia2
i∑

i a2
i

, (3.3)

that is, if the individual spectral centroids of the ai and bi are identical, independent of
the value of g. If the ai and bi are nonzero for common i, it is more cumbersome to
derive a relationship such that C′

S = CS, in part because the relative phases of the ai and
bi need to be accounted for as well. It could also be desirable to lower the brightness of
the processed signal, such that C′

S < CS. Again, to achieve this it will depend on whether
the ai and bi are nonzero for different i, or not, and their relative phase in the latter
case. Because CS depends in such a complicated manner on the harmonic structure of the
signals, as well as on the processing details, we do not further consider an analysis of
these effects. In general, a mildly sloping harmonics spectrum of the bi should maintain
a similar value for CS and, therefore, a similar timbre. Of course, if only a component
at f0/2 is added, without any higher harmonics, CS will be reduced by an amount that
depends on the amplitude of the f0/2 component.

3.2.3 LOUDNESS (AMPLITUDE)

Many of the comments made in Sec. 2.2.3 regarding loudness effects for low-frequency
psychoacoustic BWE also apply for low-frequency physical BWE methods, although the
effects are in the opposite ‘direction’. It will again be useful to refer to the equal-loudness
contours of Fig. 1.18. Firstly, we see that adding low-frequency components in the bass
frequency range means that the added components will be less audible than the original
low partials, due to the upward slope of the equal-loudness contours at low frequencies.
A more proper way of analysing this exactly would be to use a loudness model, such
as ISO532A or ISO532B, described in Sec. 1.4.4.2. Nonetheless, as acoustic energy is
added above threshold, the loudness of the signal will increase. Furthermore, we assume
that the loudspeaker has a more or less ‘flat’ response in the frequency region where the
synthetic components are added, so we do need to consider the loudspeaker’s response
as we did in Sec. 2.2.3 and Eqns. 2.5 and 2.6.

3.3 LOW-FREQUENCY PHYSICAL BANDWIDTH
EXTENSION ALGORITHMS

In the previous chapter on low-frequency psychoacoustic BWE, we encountered several
different ways to create higher harmonics from a (periodic) signal. We can borrow many
of these techniques to also create subharmonics, if we make appropriate changes to the
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algorithms. Therefore, only a limited number of possible algorithms will be presented,
as others will be obvious extensions of what was presented in Chapter 2. First, we will
discuss several options on using the synthetic low-frequency components.

3.3.1 SYSTEMS WITH LOW-FREQUENCY EXTENSION

Figure 3.1 presents a low-frequency physical BWE system; comparison with Fig. 2.4 will
show that there is a lot of similarity with the low-frequency psychoacoustic BWE system.
However, the processing details differ. The input signal x(t) is filtered by FIL1 to obtain
the lowest frequency band present in the signal. Although this band will vary over time, for
simplicity, a constant band of about an octave can be used. The actual bandpass region will
depend on the low-frequency cut-off value fl of the loudspeaker used, and the frequency
division occurring in the non-linear device (NLD). Assuming that this frequency division
is a factor of two, the bandpass region of FIL1 can be set to 2fl –4fl, for example, for
fl = 30 Hz, this would be 60–120 Hz. This bandpass signal is processed by the NLD, to
create a fundamental an octave lower than the strongest frequency component at its input,
and also the harmonics of this new fundamental. Depending on whether only the new
fundamental or also some of its harmonics are desired in the output, filtering by FIL2
will select the desired frequency range. If only the new fundamental is desired, FIL2 will
be bandpass between fl –2fl; if also harmonics are desired, the high-frequency limit of
FIL2 should be increased, for example, to 4fl. Finally, a gain factor g is applied to create
the harmonics signal xh(t).

At this point, there are several options. One option is indicated by the dash-dotted line
in Fig. 3.1, where xh(t) is fed to a ‘low-frequency effects’ (LFE) loudspeaker (analogous
to the sixth channel in a 5.1 surround sound system)2. The other option is to add xh(t)

back to a delayed version of x(t), where the delay of x(t) should match the filtering delay
of xh(t)

3, yielding output signal y(t). A standard crossover network can then be used to

x
FIL1 FIL2NLD

DEL

LFE

g
xh y

Figure 3.1 Low-frequency physical BWE system. FIL1 and FIL2 are bandpass filters,
NLD is a non-linear device, g is a scaling factor. The input signal x(t) is processed to
yield a harmonics signal xh(t), which can be fed directly to a low-frequency effects (LFE)
channel. Alternatively, it can be added back to x(t) and applied to a set of loudspeakers,
including a subwoofer

2
By obvious modification to the filter bandpass regions and the NLD, extremely low frequencies that are below,

say, 20 Hz can be generated. These frequencies can be used to drive shakers that transmit tactile vibrations.
3

As for the low-frequency psychoacoustic BWE system, filtering for low-frequency physical BWE should
preferentially be done with linear-phase filters (see Sec. 2.3.3), such that all frequency components of xh(t) will
be equally delayed.
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drive the available loudspeaker system, for example, a subwoofer for the frequency range
30–100 Hz, and an accompanying full-range system.

Note that we have described the low-frequency physical BWE system here as adding
very low frequency components, down to 20 or 30 Hz. Proper reproduction of such fre-
quencies requires very large and expensive loudspeaker systems. However, the frequency
regions can be scaled to higher values (say to 100 Hz), such that implementation on
smaller loudspeaker systems is also possible. Of course, for bass enhancement purposes,
the final effects are usually more dramatic at very low frequencies.

3.3.2 NON-LINEAR DEVICE

Non-linear processing for low-frequency physical BWE applications aims to lower the fre-
quency content of the available signal. Many of the comments made in Sec. 2.3.2 with regard
to non-linear processing for low-frequency psychoacoustic BWE algorithms can be applied
here as well. In particular, it is preferable to have NLDs that are level independent (homo-
geneous systems, see Sec. 1.1). With regard to the actual implementation of the NLDs, the
various possibilities discussed in Sec. 2.3.2 can often be used here, with slight modifica-
tions such that not only higher harmonics but also the subharmonic is generated. To avoid
duplicating a lot of material, we present only a brief discussion of several NLD options here.

An important difference with low-frequency psychoacoustic BWE is that for low-
frequency physical BWE, we can choose to add only the halved fundamental, thereby
creating a harmonic series with f0/2, f0, 2f0, and so on. As discussed in Sec. 3.2.1,
the f0/2 component may not group too well with the other partials, although common
amplitude or frequency modulation of all partials will facilitate grouping (Sec. 1.4.7). On
the other hand, the harmonics generated by the NLD (as discussed below) can all be
added back to the main signal. In such a case, it is possible that a harmonics series of for
example, f0/2, f0, 3f0/2, 2f0, and so on, is generated, in which case a strong pitch at
f0/2 is always perceived. The perceptual effect of low-frequency physical BWE therefore
depends on how many synthetic harmonics are added back to the main signal.

3.3.2.1 Rectifier

In Sec. 2.3.2.2, a rectifier as an NLD was introduced for low-frequency psychoacoustic
BWE applications. It was seen that the rectifier predominantly generates the double-
frequency component of the strongest input frequency component, that its temporal
response is good, and that the amount of intermodulation distortion can be quite large if
more than one frequency component of comparable amplitude are contained in the input.
To modify this algorithm such that it generates half the input frequency, we can simply
set the output to zero for alternating periods of the input, as in Fig. 3.2, which can be
done effectively by detecting zero crossings of the input signal.

3.3.2.2 Integrator

In Sec. 2.3.2.3, an integrator as an NLD was introduced. In contrast to the rectifier, all (odd
and even) harmonics of the input frequency are generated. The amount of intermodulation
distortion was generally low, although the temporal response was slightly worse (in terms
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Figure 3.2 Low-frequency physical BWE processing with various NLDs. The upper
panel shows a tone burst at 100 Hz. The middle panel shows the effect of rectification
(solid line, offset by +0.5), integration (dashed line, no offset), and clipping (dash-dotted
line, offset by −0.5). Note that period doubling occurs, because the signal is zeroed on
every other period for the rectifier and clipper, while for the integrator the reset occurs
after two input periods. The lower panel shows the effect of linear-phase filtering around
50 Hz, such that only the fundamental frequency is retained

of distortion of temporal envelope). To use an integrator for halving the frequency of
a signal, the only necessary modification is to reset the output of the integrator to zero
after two input periods have occurred. The input signal periods can again be detected
by observing zero crossings. The integrated output for a pure-tone input is plotted as a
dashed line in the middle panel of Fig. 3.2. Linear-phase filtering this signal around 50 Hz
leads to a signal as shown by a dashed line in the lower panel of the same figure.

3.3.2.3 Clipper

In Sec. 2.3.2.4, a clipper as an NLD was introduced. This device generates odd harmonics
of the input frequency. The clipper was shown to be very robust against intermodulation
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distortion, and to have a good temporal response. Again, a slight modification will allow
the clipper to be used for low-frequency physical BWE purposes. As with the rectifier
discussed previously, alternating periods of the input signal are clipped (at a clipping
level of half-maximum amplitude, in this case ±0.5), the other periods being zeroed.
The resulting signal is shown as the dash-dotted line in the middle panel of Fig. 3.2.
Linear-phase filtering around 50 Hz leads to the signal shown by the dash-dotted line in
the lower panel of the same figure.

For low-frequency psychoacoustic BWE algorithms, it was discussed at length how to
enhance performance by making the clipping level adaptive with respect to the level of
the input signal. For low-frequency physical BWE, this might also have some advantage,
and a similar strategy could be employed, although this has not been validated by actual
listening tests.

3.3.2.4 Low-frequency Physical Bandwidth Extension with Frequency Tracking

An alternative method of generating subharmonics is by using a frequency tracker, as
discussed in Sec. 2.4, refer to Fig. 2.25. This algorithm generates any desired harmon-
ics spectrum, with a fundamental that is based on the strongest frequency component
contained in the input spectrum (the tracked frequency). Advantages are that there is no
intermodulation distortion and that harmonics are only generated if the input is periodic.
Also, the frequency tracker is implemented in a computationally very efficient manner.
The disadvantage is that the frequency tracker needs finite time to converge to the actual
signal frequency, and that errors may occur if multiple input frequencies or additive noise
is present. However, the particular method of frequency tracking was shown to adapt
quickly and that some corrections for the tracked frequency are possible if a few statistics
of any additive noise are known or can be estimated.

Assuming that the input contains frequency ω0, and is correctly estimated by the fre-
quency tracker, the harmonics generator (HG in Fig. 2.25) will generate a signal xh(t) as

xh(t) =
N∑

k=1

Ak sin(k
ω0

2
t), (3.4)

If one desired to merely add the halved fundamental, then N = 1; otherwise, N > 1
and a desired harmonics spectrum can be generated. Because the synthetic frequency
components are explicitly created, there is no intermodulation distortion.

3.3.2.5 Inclusion of Higher Harmonics

From the lower panel of Fig. 3.2, it is quite obvious that the resulting signal (representing
the signal xh(t) in Fig. 3.1) does not depend a great deal on the particular choice of NLD.
This is because in all cases only the halved fundamental (in this case 50 Hz) was extracted
by FIL2 of Fig. 3.2. The various NLDs (rectifier, integrator, clipper) differ most in the
amplitude and phase spectrum of the generated harmonics, thus if some of the harmonics
are retained by FIL2, then the output signals would differ more. To illustrate this, Fig. 3.3
shows signals xh(t) as they would be obtained if FIL2 were a linear-phase filter with a
bandpass of 40–160 Hz (all the other processing steps are identical to those in the first
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Figure 3.3 Low-frequency physical BWE processing with various NLDs; input signal
is assumed to be a gated 100-Hz tone as in the upper panel of Fig. 3.2. Here, the output
signal xh(t) (refer to Fig. 3.1) is shown for three different NLDs: rectifier (upper panel),
integrator (middle panel), and clipper (lower panel). Owing to filtering of the spectrum
generated by the NLD, only harmonics at 50, 100, and 150 Hz are appreciably present
in the output signals. Note that the different spectra generated by the NLDs causes the
observed differences in waveforms

example). Thus, the partials at 50, 100, and 150 Hz would be passed completely, while
higher partials would be strongly attenuated by FIL2. The interference of these three
partials creates the differences visible in Fig. 3.3, where signals by rectifier, integrator,
and clipper are displayed as solid, dashed, and dash-dotted lines respectively.

3.3.3 FILTERING

Using the same kind of analysis as was done in Sec. 2.3.3.3 for low-frequency psy-
choacoustic BWE algorithms, it can be shown that it is preferable to use a linear-phase
implementation for filters FIL1 and FIL2, for two reasons:

• The final output signal of the low-frequency physical BWE algorithm will be obtained
by scaling xh(t) and adding it back to x(t) (either electrically or acoustically, see
Fig. 3.1), so common frequency components will interfere either constructively or
destructively. In the example of Figs. 3.2 and 3.3, there is a synthetic 100-Hz compo-
nent in xh(t) as generated by the rectifier and the integrator (but not the clipper, which
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generates only odd harmonics of 50 Hz), which adds to the original 100-Hz fundamental
present in x(t). Figure 2.21 shows examples in which synthetic and original frequency
bands interfere to create an irregular amplitude spectrum in case of non-linear-phase
filters. For low-frequency physical BWE algorithms, the situation would be similar,
if beside the halved fundamental, higher harmonics are also added, as these would
overlap in frequency range with the original signal. If only the halved fundamental is
added, there is no frequency overlap between x(t) and xh(t), and there should be no
objection to use a non-linear-phase filter from this particular point of view.

• Because of the filtering by FIL1 and FIL2, signal xh(t) will be delayed with respect to
x(t), by an amount that depends on the filter orders (higher filter order giving larger
delays). In Sec. 1.4.7 on auditory scene analysis, it was explained that an onset delay
between frequency components can lead to segregation, that is, x(t) and xh(t) being
separately perceived as two different streams. This was analysed for low-frequency
psychoacoustic BWE in detail in Sec. 2.3.3.3, and typical values for total group delay
variation over frequency of components of xh(t) was shown to be on the order of 10 ms
(Fig. 2.22), which combines the effect of both filters. Such delays can be assumed to
be detectable in principle (Zera and Green [304]), and there is some circumstantial
evidence from informal listening tests that such can indeed lead to segregation. To
avoid such problems, linear-phase filters will not lead to group delay variations, and if
x(t) is delayed (using a delay line) by the same amount as xh(t) (the required amount
of delay can be easily computed if the filters FIL1 and FIL2 are known), both signals
can be added exactly in phase. Note that in this case it does not matter whether x(t)

and xh(t) have overlapping frequency components or not.

The standard way to implement linear-phase filters with FIR structures presents a problem
for low-frequency physical BWE in that the bandpass region is usually a very small
fraction of the sample rate. Also, the filter’s low cut-off frequency can be very small,
even smaller than for low-frequency psychoacoustic BWE algorithms. An FIR filter would
have to be of very high order (many taps) to implement such a specification, leading to a
high computational burden. A more efficient way is to use an IIR filter that is designed to
have an amplitude spectrum that is the square root of the desired specification. The filter
can be applied once in forward time, after which the filtered signal is time reversed and
filtered using the same filter. This output is then time reversed again. The result is zero
phase shift (as phase changes of the first filter are canceled by the second time-reversed
filter) and an attenuation that is the square of the IIR filter’s amplitude spectrum. This
was also discussed in Sec. 2.3.3.3 and is discussed elaborately in, for example, Powell
and Chau [213].

3.3.4 GAIN OF HARMONICS SIGNAL

Again, the situation is very analogous to the case of low-frequency psychoacoustic BWE
applications. Gain (or scaling) g(t) of xh(t) prior to addition to x(t) to form the output y(t)

(Fig. 3.1) could be fixed, frequency adaptive, and/or output-level adaptive. For a simple
implementation, g(t) could simply be a constant value, such that the loudness balance
of the synthetic harmonics signal and the original signal is subjectively appropriate, and
does not lead to distortion at high signal levels.
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A slightly more subtle scheme could be adopted analogous to Gan et al. [83], which
takes into account the equal-loudness level contours (Sec. 2.3.4.2 and Fig. 1.18) to expand
the envelope of the generated harmonics signal. While Gan et al. designed this scheme for
low-frequency psychoacoustic BWE applications, the same procedure could be used for
a low-frequency physical BWE algorithm. In a simple implementation of their scheme,
the envelope of the harmonics signal xh(t) would be expanded by a factor of about
1.10 (intended for fundamental frequencies in the range 40–100 Hz; the expansion ratio
varies with fundamental frequency, the quoted value is an average). A more sophisticated
approach implements a different expansion ratio for each harmonic, reflecting the change
in loudness growth over frequency. A scheme like this, in which each harmonic is scaled
separately, is attractive if harmonics are generated individually, such as in Gan et al.ś
modulation technique, or the method described in Sec. 2.4 and 3.3.2.4 (using a frequency
tracker). In the latter case, expansion ratios can be determined even more accurately, as
the fundamental frequency is known (estimated), which is not implemented in Gan et al.ś
original algorithm.

An output-level-adaptive gain could be implemented entirely analogous to that described
in Sec. 2.3.4.3, and illustrated in Fig. 2.24. This scheme employs a feedback loop from
the output y(t) to control g(t). In normal circumstances, g(t) has a fixed value, but if the
level of y(t) exceeds a predetermined value, g(t) should be decreased very quickly to
prevent distortion occurring in the loudspeaker. While y(t) is below the threshold level,
g(t) can be slowly increased back to its nominal value. This increase should occur slowly
to prevent envelope distortion of y(t) (i.e. on a time scale of a few seconds). An addi-
tional advantage of such an automatic gain control (AGC) scheme is that low-level bass
sounds are maximally amplified, while high-level bass sounds are attenuated. This is a
good match to the audibility characteristics of low-frequency sounds, which have very
low loudness at low-to-intermediate sound pressure level, but which increase in loudness
very rapidly (more so than intermediate frequency sounds) with increasing sound pressure
level.

3.4 LOW-FREQUENCY PHYSICAL BANDWIDTH EXTENSION
COMBINED WITH LOW-FREQUENCY PSYCHOACOUSTIC
BANDWIDTH EXTENSION

We have so far presented several options for physical extension of the low-frequency
spectrum of an audio signal. In Chapter 2, we have presented the same for a psychoa-
coustic bandwidth extension. These two concepts can be combined such that the bass
pitch in audio signal is lowered (usually by an octave), but in such a way that very low
frequency components are not radiated nor ever physically present. This would permit
application to smaller loudspeaker systems.

Beside the obvious cascade of a low-frequency physical BWE system followed by a
low-frequency psychoacoustic BWE system, this concept can be more efficiently imple-
mented by the ‘standard’ low-frequency physical BWE approach of Fig. 3.1. The only
modification is that FIL2 should have a higher low cut-off frequency, such that the halved
fundamental is not actually present in xh(t). For example, a complex tone with a 70-Hz
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fundamental would yield a synthetic signal after non-linear processing that has a funda-
mental at 35 Hz, including harmonics (the spectrum of which depends on the particular
choice of the NLD). When using a small loudspeaker, with a low-frequency resonance
at 100 Hz, FIL2 could be implemented as a bandpass filter between 100–200 Hz. The
result is that the pitch of the bass tone has been lowered to 35 Hz, which is effected by
frequency components >100 Hz. In other words, a signal without very low pitched tones
has been modified such that it is perceived as having very low pitched tones, using a
loudspeaker that cannot reproduce very low frequencies.





4
Special Loudspeaker Drivers
for Low-frequency Bandwidth
Extension

The preceding chapter dealt with low-frequency BWE exclusively through signal-processing
algorithms. For the case of small loudspeakers, it was shown that non-linear processing
could enhance the perception of very low frequency tones. The advantage of such an
approach is that the loudspeaker need not be modified in any way, as the algorithm is tai-
lored to the loudspeaker. In this chapter, two options are described whereby modifying the
loudspeaker driver can also lead to enhanced bass perception. This is achieved by modifying
the force factor of the driver, typically by employing either a very strong or a very weak
magnet, compared to what is commonly used in typical drivers. Both these approaches also
require some pre-processing of the signal before it is applied to the modified loudspeaker.
Thus, this kind of BWE is a mixed approach combining mechanical and algorithmic mea-
sures. In Sec. 4.1, the influence of the force factor on the performance of the loudspeaker is
reviewed, after which Secs. 4.2–4.3 discuss high force factor and low force factor drivers,
respectively, and their required signal processing. Section 4.4 presents an analysis of the
transient responses of these special drivers.

4.1 THE FORCE FACTOR

Direct-radiator loudspeakers typically have a very low efficiency, since the acoustic load
on the diaphragm or cone is relatively low compared to the mechanical load, and in
addition the driving mechanism of a voice coil is quite inefficient in converting electrical
energy into mechanical motion. The drivers have a magnetic structure – which determines
the force factor Bl – that is deliberately kept at an intermediate level so that the typical
response is flat enough to use the device without significant equalization. It was already
shown in Sec. 1.3.2.3 that the force factor Bl plays an important role in loudspeaker
design; it determines among others the frequency response, the transient response, the
electrical input impedance, the cost, and the weight; we will discuss various of these
consequences. To show the influence on the frequency response, the sound pressure level

Audio Bandwidth Extension E. Larsen and R. M. Aarts
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Figure 4.1 Sound pressure level (SPL) for the driver MM3c with three Bl values (low,
medium, and high), while all other parameters are kept the same (1-W input power),
Bl = 1.2 (solid), Bl = 5 (dash-dot), and Bl = 22 (dash). See Table 4.2 for the other
parameters

(SPL) of a driver with three Bl values (low, medium, and high) is plotted in Fig. 4.1,
while all other parameters are kept the same. It appears that the curves change drastically
for varying Bl. The most prominent difference is the shape, but the difference in level
at high frequencies is also apparent. While the low-Bl driver has the highest response
at the resonance frequency, it has a poor response beyond resonance, which requires
special treatment, as discussed in Sec. 4.3.1. The high-Bl driver has a good response
at higher frequencies, but a poor response at lower frequencies, which requires special
equalization as discussed in Sec. 4.2. In between, we have the well-known curve for a
medium-Bl driver. To show the influence of Bl on the electrical input impedance, the
magnitude is plotted for a driver with two Bl values (low and medium), while all other
parameters are kept the same, see Fig. 4.2. In this plot, the curve for Bl = 22 is omitted;
it has similar shape, but a much higher Q and a larger peak (at Re +Bl2/Rt = 2206 �).
It also appears that these curves change drastically for varying Bl. The phase of the
electrical input impedance is plotted in Fig. 4.3. The underlying reason for the importance
of Bl is that besides determining the driving force, it also gives (electric) damping to the
system. The total damping is equal to the (real part of the) radiation impedance, the
mechanical damping, and the electrical damping ((Bl)2/Re), where the electrical one
dominates for medium- and high-Bl loudspeakers, and is most prominent around the
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Figure 4.2 The electrical input impedance for the driver MM3c with two Bl values
(low, and medium, respectively Bl = 1.2 (solid), and Bl = 5 (dash)), while all other
parameters are kept the same (Le = 0). See Table 4.2 for the other parameters

resonance frequency. The power efficiency given in Eqn. 1.54 can be written as

η = (Bl)2Rr

Re{(Rm + Rr)2 + (Rm + Rr)(Bl)2/Re + (mtω0ν)2} , (4.1)

clearly showing the influence of Bl. This importance is further elucidated in the following
paragraph.

A dimensionless measure of damping In Vanderkooy et al. [284], a dimensionless
parameter was introduced to describe the relative damping due to Bl. As Bl increases,
the box and suspension restoring forces become less relevant, as we shall see later, so we
choose a parameter of the form

iω(Bl)2/Re

−ω2mt
, (4.2)

which is the ratio of the electrical damping force to the inertial force on the total moving
mass mt (consisting of the cone with its air load). We remove the imaginary unit and the
negative sign, so the relative damping factor becomes

δ = (Bl)2

ωrmRe
. (4.3)
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Figure 4.3 The phase [rad] of the electrical input impedance for the driver MM3c with
three Bl values (low, and medium, and high, while all other parameters are kept the same
(1-W input power), Bl = 1.2 (solid), Bl = 5 (dash), and Bl = 22 (dots). See Table 4.2
for the other parameters

The frequency ωr can be chosen to represent the low-frequency end of the intended audio
spectrum, or it could be set to a reference frequency such as 50 Hz, or the resonance
frequency w0. The reference frequency may be useful since the low-frequency cut-off of
a system is significantly altered when Bl is significantly increased. Incidentally, for the
usual Butterworth system aligned to frequency ω0, δ would be

√
2. The drivers MM3c

and HBl mentioned in Table 4.2 have δ = 0.059 and δ = 4.43 respectively. The common
parameter Qe, the electrical Q-factor, while similar to δ−1 (and at the resonance frequency
there holds Qe = δ−1), is predicated on a normal driver for which the resonance frequency
is determined by the interaction between inertial and suspension forces. As Bl is increased,
the suspension forces are less relevant, and Eqn. 4.3 is a better measure than Qe.

4.2 HIGH FORCE FACTOR DRIVERS

In the 1990s, a new rare-earth-based material, neodymium-iron-boron (NdFeB), in sintered
form, came into more common use. It has a very high flux density coupled with a high
coercive force, possessing a B-H product increased by almost an order of magnitude
compared to more common materials. This allows drivers to be built in with much larger
total magnetic flux, thereby increasing Bl by a large factor. In Vanderkooy et al. [284],
some features of normal sealed-box loudspeakers with greatly increased Bl were outlined.
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This work focused mainly on the efficiency of the system as applied to several amplifier
types, but also indicated several other avenues of interest. Figure 4.1 shows the frequency
response curves (using Eqns. 1.39 and 1.40) for three Bl values: 1.2, 5.0, and 22 N/A.
At the higher-Bl value, the electromagnetic damping is very high. If we ignore in this
case the small mechanical and acoustic damping of the driver, the damping term is
proportional to (Bl)2/Re. For a Butterworth response, the inertial term ω2m, the damping
term ω(Bl)2/Re, and total spring constant kt are all about the same at the bass cut-off
frequency. When Bl is increased by a factor of 5, the damping is increased by a factor
of 25. Thus the inertial factor, which must dominate at high frequencies, becomes equal
to the damping at a frequency about 25 times higher than the original cut-off frequency.
This causes the flat response of the system to have a 6-dB per octave roll-off below that
frequency, as shown in the figure.

At very low frequencies, the spring-restoring force becomes important relative to the
damping force at a frequency 25 times lower than the original cut-off frequency. Below
this the roll-off is 12 dB/octave. Such frequencies are too low to influence audio perfor-
mance, but it is clear that the system (driver and cabinet) is now no longer constrain-
ing the low-frequency performance. We could use a much smaller box without serious
consequences.

How much smaller can the box be? The low-frequency cut-off has been moved down by
a factor of nearly 25. The suspension stiffness k is small, and since kB ∝ 1/V0, the cut-off
frequency will return to the initial bass cut-off frequency when the box size is reduced by
a factor of about 25: a 25-litre box could be reduced to 1 litre. Powerful electrodynamic
damping has allowed the box to be reduced in volume without sacrificing the response at
audio frequencies. The only penalty is that we must apply some equalization.

The equalization needed to restore the response to the original value can be deduced
from Fig. 4.1, since the required equalization is the difference between Bl = 5 (dashed),
and Bl = 22 (dotted) curves. Such equalization will, in virtually all cases, increase
the voltage applied to the loudspeaker, since audio energy resides principally at lower
frequencies. The curve levels out at just over 12 dB at low frequencies, but in actual use
one might attenuate frequencies below, say, 40 Hz.

The power efficiency for very large Bl can be calculated (using Eqn. 4.1) as

lim
Bl→∞

η = Rr

Rm + Rr
. (4.4)

This clearly shows that the efficiency increases for decreased mechanical damping Rm.

An observation about equalization The required equalization can be calculated by the
frequency response ratio HL(ω)/HH(ω) using Eqn. 1.40, where the subscripts refer to
the high and low values of Bl. The required equalization function for two loudspeakers
with different Bl values, but identical in all other respects, can also be calculated using
an alternative approach, giving new insight, which we develop now.

For the two loudspeakers to produce the same acoustic output, the shape and motion of
the two pistons (or cones) must be the same. Since all other aspects of the loudspeakers
are the same, this can be achieved if the total force on the pistons is the same, thus
ensuring that they have the same motion. The force is derived from the electromagnetic



134 Audio Bandwidth Extension

Lorentz force, BlI (ω). Since current I (ω) = V (ω)/Z(ω), where V (ω) is the loudspeaker
voltage and Z(ω) is its electrical impedance, we must arrange to have BlV (ω)/Z(ω) the
same for the two conditions. Hence

BlHVH(ω)

ZH(ω)
= BlLVL(ω)

ZL(ω)
. (4.5)

Note, however, that since

HEQ(ω) = VH(ω)/VL(ω), (4.6)

then

HEQ(ω) = BlL/ZL(ω)

BlH/ZH(ω)
, (4.7)

a very simple relationship that indicates the importance of the electrical impedance and
the force factor Bl in determining loudspeaker characteristics. We can verify the result
using Eqns. 1.40 and 1.42. Note that it applies to the response at any orientation, not just
on-axis, and represents a general property of acoustic transducers with magnetic drivers.

4.3 LOW FORCE FACTOR DRIVERS

The introduction of concepts such as Flat-TV and small (mobile) sound reproduction
systems has led to a renewed interest in obtaining a high sound output from compact
loudspeaker arrangements with a good efficiency. Compact relates here to both the volume
of the cabinet into which the loudspeaker is mounted, as well as the cone area of the
loudspeaker. Normally, low-frequency sound reproduction with small transducers is quite
inefficient. To increase the efficiency, the low-frequency region, say 20 to 120 Hz can be
mapped to a single tone, and by using a special transducer with a low-Bl value, at a very
high efficiency at that particular tone. In the following section, an optimal force factor
will be derived to obtain such a result.

4.3.1 OPTIMAL FORCE FACTOR

The solution to obtain a high sound output from a compact loudspeaker arrangement,
with a good efficiency, consists of two steps. First, the requirement that the frequency
response must be flat is relaxed. By making the magnet considerably smaller (See Fig. 4.6
at the left side), a large peak in the SPL curve (see Fig. 4.1 (solid curve)) will appear.
Since the magnet can be considerably smaller than usual, the loudspeaker can be of the
moving magnet type with a stationary coil (see Fig. 4.6 and Fig. 4.7), instead of vice
versa. At the resonance frequency, the efficiency can be a factor of 10 higher than that of
a normal loudspeaker. In this case we have, at the resonance frequency of about 40 Hz,
an SPL of almost 90 dB at 1-W input power, even when using a small cabinet. Since it
is operating in resonance mode only, the moving mass can be enlarged (which might be
necessary owing to the small cabinet), without degrading the efficiency of the system.
Owing to the large and narrow peak in the frequency response, the normal operating
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Figure 4.4 Frequency mapping scheme. The box labeled ‘BPF’ is a band pass filter,
and ‘Env. Det.’ is an envelope detector, the signal Vout is fed (via a power amplifier) to
the driver
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Figure 4.5 The signals before and after the frequency-mapping-processing of Fig. 4.4.
(a) Shows the signal at Vin, and the output of the envelope detector as the thin outline
along Vin. (b) and (c) Show the spectrogram of the input and output signals respectively

range of the driver decreases considerably, however. This makes the driver unsuitable for
normal use. To overcome this, a second measure is applied. The low-frequency content
of the music signal, say 20 to 120 Hz, is mapped to a slowly amplitude-modulated tone
whose frequency equals the resonance frequency of the transducer. This can be done with
a set-up depicted in Fig. 4.4. The modulation is chosen such that the coarse structure
(the envelope) of the music signal after the mapping is the same as before the mapping,
which is shown in Fig. 4.5. Part (a) shows the waveform of a rock-music excerpt (the
blue curve); the red curve depicts its envelope. Parts (b) and (c) show the spectrograms of
the input and output signals respectively, clearly showing that the frequency bandwidth of
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Figure 4.6 Left: Magnet system of the prototype (MM3c shown in Fig. 4.7) of the
optimal low-Bl driver (only 3 g and 4.5-mm diameter) with a 50 Euro cent coin. Right: a
small woofer of 13-cm diameter and about 1 kg

Figure 4.7 Picture of the prototype driver (MM3c) with a 2 Euro coin and ordinary
matches. At the position where a normal loudspeaker has its heavy and expensive magnet,
the prototype driver has an almost empty cavity; only a small moving magnet is necessary,
which is visible at Fig. 4.6 (left side)
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the signal around 50 Hz decreases after the mapping, yet the temporal modulations remain
the same. Using Eqns. 1.37 and 1.39, the voltage sensitivity at the resonance frequency
can be written as

H(ω = ω0) = jω0SBlρ

2πrRe(Rm + (Bl)2/Re)
. (4.8)

If Eqn. 4.8 is maximized by adjusting the force factor Bl (differentiating H(ω = ω0)

with respect to Bl and setting ∂H/∂(Bl) = 0), we get

(Bl)2

Re
= Rm. (4.9)

Note at this point that if Eqn. 4.9 holds, we get for this particular case Qe = Qm (see
Eqn. 1.43). It appears that the maximum voltage sensitivity is reached as the electrical
damping term (Bl)2/Re is equal to the mechanical damping term Rm; in this case, we
refer to the optimal force factor as (Bl)o. If Eqn. 4.9 is substituted into Eqn. 4.8, this
yields the optimal voltage sensitivity ratio

Ho(ω = ω0) = jωρS

4πr(Bl)o
. (4.10)

We find that the specific relationship between (Bl)o and both Rm and Re (Eqn. 4.9) causes
Ho to be inversely proportional to (Bl)o (which may seem counterintuitive), and thus also
inversely proportional to

√
Rm. The power efficiency at the resonance frequency for the

optimality condition obtained by substitution of Eqn. 4.9 into Eqn. 4.1 yields

ηo(ω = ω0) = RmRr

(Rm + Rr)2 + (Rm + Rr)Rm
. (4.11)

This can be approximated for Rr � Rm as

ηo(ω = ω0) ≈ Rr

2Rm
, (4.12)

which clearly shows that for a high-power efficiency at the resonance frequency, the cone
area must be large, since Rr is – according Eqn. 1.47 – proportional to the squared cone
area; and that the mechanical damping must be as small as possible. This conclusion is
the same as for achieving a high voltage sensitivity (given by Eqn. 4.1).

Using Eqn. 1.39, 1.40, and v = dx/ dt , we get for the cone velocity

v(ω = ω0, (Bl)2/Re = Rm)

Vin
= 1

2(Bl)o
, (4.13)

which again shows the benefit of low Bl and Rm values. Further, we get, assuming the
optimality condition given by Eqn. 4.9 and using Eqn. 1.45,

Zin(ω = ω0, (Bl)2/Re = Rm) ≈ 2Re. (4.14)
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4.4 TRANSIENT RESPONSE

In order to calculate the transient behaviour of the system, we calculate the transient
response of a driver. We will determine the response to a sinusoid that is switched on at
t = 0, and finally, the impulse response.

4.4.1 GATED SINUSOID RESPONSE

The response of a driver, with resonance frequency ω0, to a sinusoidal signal with fre-
quency ωs, switched on at t = 0

v(t) =
{

0 , t < 0
A sin(ωst) , t ≥ 0

(4.15)

is calculated. It is convenient to write Eqn. 4.15 in the Laplace domain

V (s) = Aωs

s2 + ω2
s
. (4.16)

The transfer function H(s) from voltage V to excursion X is

H(s) = 1

s2mt + sRt + kt
, (4.17)

where mt is the total moving mass, Rt is the total damping (mechanical, electrical, and
acoustical)

Rt = Rm + (Bl)2

Re
+ Ra, (4.18)

and kt the total spring constant, as described in Sec. 1.3.2.3. Hence X(s) can be calcu-
lated as

X(s) =
Bl

Re

Aωs

s2 + ω2
s

s2mt + sRt + kt
. (4.19)

Assuming that Eqn. 4.17 has complex poles (this is the case if R2
t < 4mtkt), they are at

s1,2 = −βω0 ± iωn = −a ± ib. (4.20)

By using partial fraction expansion (see e.g. Palm [198], or Arfken and Weber [21]), we
can write Eqn. 4.19 as sum of basic terms, and then the inverse Laplace transformation
can be readily carried out, resulting in

x(t) = BlωsA

mtRe

[
e−at

(
k1 cos ωnt +

(
k2 − ak1

ωn

)
sin ωnt

)
+ k3 cos ωst + k4

ωs
sin ωst

]
,

(4.21)



Special Loudspeaker Drivers for Low-frequency Bandwidth Extension 139

where

a = Rt

2mt
,

b2 = ω2
n =

kt

mt
−
(

Rt

2mt

)2

,

k1 = 2a

�
,

k2 = 3a2 − b2 + w2
s

�
, (4.22)

k3 = −k1,

k4 = a2 + b2 − ω2
s

�
,

� = (a2 + b2)2 + 2ω2
s (a

2 − b2)+ ω4
s ,

where we identify a2 + b2 =
√

kt
mt
= ω2

0 as the driver’s resonance frequency, and

β = Rt

2
√

mtkt
,

Q=
√

mtkt

Rt
,

(4.23)

as the driver’s damping and quality factor Q, respectively. Further, we see that 2β = Q−1.
Looking at Eqn. 4.21, it is clear that the time constant of the transient behaviour is
determined by a−1. It is proportional to the moving mass mt, and must be small in order
to get a fast response. As a special case, we consider ωs = ω0, that is, the driver is
actuated at its resonance frequency. Furthermore, we assume that the transient part (the
product with e−at in Eqn. 4.21) has faded away. Then, Eqn. 4.21 reduces to

x(t) = − ABl

ωsReRt
cos ωst. (4.24)

Here, we see that there is a 3π/4 phase shift between the input voltage (see Eqn. 4.15)
and the output excursion.

For various drivers, the lumped-element parameters are determined and listed in Table 4.2.
For three of those drivers (see Table 4.1), the response to a suddenly switched sinusoid (see
Eqn. 4.15) is calculated (using Eqn. 4.21). The results are shown in Fig. 4.8 for the low-Bl

driver and the case that the driving signal is equal to the resonance frequency f0 = 43 Hz,
in Fig. 4.9 for a driving signal of 47 Hz, and in Fig. 4.10 for a driving signal of 86 Hz.
For the two other drivers, with a medium- and high-Bl respectively, transient responses at
resonance frequency are shown in Figs. 4.11 and 4.12 (responses at other frequencies are
very similar for these two drivers). These results show that the medium- and high-Bl driver
systems rapidly converge to their steady-state response, while this is not the case for the
low-Bl driver system. Also, the medium- and high-Bl driver systems are not sensitive to
deviations of the input frequency, while, again, this is not the case for the low-Bl driver
system. This is especially obvious in Fig. 4.10, where in the first half of the time interval,
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Table 4.1 Legend to the transient responses plotted in Figs. 4.8 – 4.12 of various drivers: low-Bl

(MM3c), normal-Bl (AD70 652), and high-Bl (HBl) loudspeakers. The frequency fs of the gated
sinusoid was set to three different values relative to the resonance frequency f0 of the driver: f0,
1.1f0, and 2f0. In all cases, the amplitude was 1 V. For the entries labeled ‘–’ no figures are
included, since these are similar to the other figure referred to in the same column. The details of
the lumped-element parameters are listed in Table 4.2

MM3c AD70652 HBl

fs = f0 Fig. 4.8 Fig. 4.11 Fig. 4.12
fs = 1.1f0 Fig. 4.9 – –
fs = 2f0 Fig. 4.10 – –
Bl 1.2 6.5 22
Qe 17 0.61 0.22
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Figure 4.8 The displacement (solid line) of the low-Bl prototype driver MM3c (using
Eqn. 4.21). The lumped-element parameters are listed in Table 4.2. The frequency of the
driving signal fs is equal to driver’s resonance frequency f0 = 43 Hz. The dotted line is
the stationary value of the displacement (Eqn. 4.21 for limt→∞)

there is significant interference between the terms with ωn and ωs of Eqn. 4.21, leading
to severe amplitude modulation during the onset transient. Therefore, the low-Bl driver
should only be used at (or near) resonance frequency.

4.4.2 IMPULSE RESPONSE

The impulse response h(t) can be calculated directly (again under the assumption that
R2

t < 4mtkt), by the inverse Laplace transform of H(s) (Eqn. 4.17) as

h(t) = ω0

ωn

e−at sin(ωnt + φ), (4.25)
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Figure 4.9 The displacement (solid line) of the low-Bl prototype driver MM3c (using
Eqn. 4.21). The lumped-element parameters are listed in Table 4.2. The frequency of the
driving signal fs is equal to 47 Hz, which is 1.1 times the driver’s resonance frequency
f0 = 43 Hz. The dotted line is the stationary value of the displacement (Eqn. 4.21 for
limt→∞)
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Figure 4.10 The displacement (solid line) of the low-Bl prototype driver MM3c (using
Eqn. 4.21). The lumped-element parameters are listed in Table 4.2. The frequency of the
driving signal fs is equal to 86 Hz, which is twice the driver’s resonance frequency f0 =
43 Hz. The dotted line is the stationary value of the displacement (Eqn. 4.21 for limt→∞)
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Figure 4.11 The displacement (solid line) of the medium-Bl driver (using Eqn. 4.21).
The lumped-element parameters are listed in Table 4.2. The frequency of the driving
signal fs is equal to driver’s resonance frequency f0 = 41 Hz. The dotted line is the
stationary value of the displacement (Eqn. 4.21 for limt→∞)
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Figure 4.12 The displacement (solid line) of a high-Bl driver (HBl), (using Eqn. 4.21).
The lumped-element parameters are listed in Table 4.2. The frequency of the driving
signal fs is equal to driver’s resonance frequency f0 = 41 Hz. The dotted line is the
stationary value of the displacement (Eqn. 4.21 for limt→∞)
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where φ = arctan (b/a). Here, we see again that the time constant a−1 (the ratio 2mt/Rt)
must be small to get a fast response (decay).

4.5 DETAILS OF LUMPED-ELEMENT PARAMETERS
AND EFFICIENCY

The lumped parameters for some loudspeakers are given in Table 4.2. From these values
and Eqn. 1.54, the efficiency η is calculated and plotted in Fig. 4.13, showing that the
efficiency is in the range of 0.2 to 10%. As a rule of thumb, we see from Table 4.2 that for
woofers k is equal to about 1 N/mm, and that Rm ≈ 1 Ns/m, while the other parameters
may differ significantly between the various drivers.

The equivalent volume of a loudspeaker is given by

Veq = ρc2(πa2)2/kt. (4.26)

Alternatively, for a given volume of the enclosure, the corresponding kt of the ‘air-
spring’ can be calculated. Mounting a loudspeaker in a cabinet will increase the total
spring constant by an amount given by Eqn. 4.26, and subsequently increase the bass
cut-off frequency of the system. To compensate for this bass loss, the moving mass has
to be increased; thus

√
ktm is increased, which changes Qe (see Eqn. 1.43). Then Bl

must be increased in order to preserve its original value. The original frequency response
is then maintained, but at the cost of a more expensive magnet and a loss in efficiency.
This is the designer’s dilemma: high efficiency or small enclosure? To meet the demand
for a certain cut-off frequency, the enclosure volume must be greater. Alternatively, the

Table 4.2 The lumped parameters for various low-frequency loudspeakers (woofers). A 4 in., and
some 7, 8, 10, and 12 in. drivers, each of them with a low and high Qe. Further, two special drivers,
a (optimal) low-Bl (MM3c) and a high-Bl one (HBl). The former is an experimental driver (see
Fig. 4.6 for its compact magnet system together with a more classical driver, and Fig. 4.7 for the
whole driver). The high-Bl one (HBl) is discussed in Vanderkooy et al. [284]. See Table 1.2 for
the abbreviations and the meaning of the variables

Type Re Bl k mt Rm S f0 Qm Qe

� Tm N/m gr. Ns/m cm2 Hz

AD44510 6.6 3.5 839 4 0.86 54 72 2.2 1.02

AD70652 7.5 6.5 885 13.2 1.48 123 41 2.3 0.61
AD70801 6.9 2.9 1075 6.3 0.81 123 66 3.2 2.13
AD80110 6.0 9.0 971 16.5 1.38 200 39 2.9 0.29
AD80605 6.8 5.1 1205 13.4 0.84 200 48 4.8 1.05
AD10250 6.6 13.0 1124 38.5 2.74 315 27 2.4 0.25
AD10600 6.8 5.9 909 28.5 1.06 315 29 4.8 0.99
AD12250 6.6 13.0 1429 54.0 2.93 490 26 3.0 0.34
AD12600 6.9 6.0 1205 33.0 0.76 490 31 8.2 1.21

MM3c 6.4 1.2 1022 14.0 0.22 86 43 17.0 17.00
HBl 7.5 22.0 3716 56.0 0.91 490 41 16.0 0.22



144 Audio Bandwidth Extension

10−1

10−2

10−3

10−4

10−5

10−6

10−7

1 10 100

Frequency (Hz)

E
ff

ic
ie

nc
y

1 k 10 k

AD44510
AD12250
AD12600
MM3c
HBl

Figure 4.13 Efficiency of various loudspeakers: AD44510 (solid/square markers),
AD12250 (dashed/triangle markers), AD12600 (small-dashed/‘+’ markers), MM3c (dot-
dashed/‘×’ markers), and HBl (wide-dashed/‘�’ markers). See Table 4.2 for the parame-
ters. Note that not all drivers have the same cone area

efficiency for a given volume will be less than that for a system with a higher cut-off
frequency. This dilemma is (partially) solved by using the low-Bl concept as discussed in
Sec. 4.3, however, at the expense of a slightly decreased sound quality and some additional
electronics to accomplish the frequency mapping. The decrease of sound quality appears
to be modest, apparently because the auditory system is less sensitive at low frequencies
(Sec. 1.4.5.2). Also, the other parts of the audio spectrum have a distracting influence
on this mapping effect, which has been confirmed in a study by Le Goff et al. [158], in
which detectability of mistuned fundamental frequencies were determined for a variety
of realistic complex signals.

4.6 DISCUSSION

In the previous sections we have seen that the force factor BI plays a very important
role in loudspeaker design. It determines the efficiency, the impedance, the SPL response,
the temporal response, the weight, and the cost. The choice concerning these parameters
depends on the application. If the size of the cabinet is of less importance, a medium BI

is the simplest solution, since it does not require any other measures. On the other hand,
if a small cabinet and a high efficiency are important than the low BI system with an
optimum value given by Eqn. 4.9 has the preference. This requires special electronics,
however. Also, the transient response is less favorable than that of a larger magnet system
and this makes it less suitable for High-Fi applications. The high BI is in between: it has
a high efficiency and good response, but it requires an expensive magnet and additional
electronics. Clearly, the application dictates the parameter choice.
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High-frequency Bandwidth
Extension for Audio

5.1 INTRODUCTION

The previous chapters focused on BWE methods to extend the (perceived) low-frequency
content of reproduced audio signals. The bandwidth limitation in those cases was primarily
due to the transducer. Bandwidth limitation can also occur in the transmission channel
(in which, for the moment, we also include signal storage). A familiar example is the
telephone channel, which has a bandwidth of about 3 kHz. Speech signals transmitted
through this channel are audibly bandlimited, because the bandwidth of natural speech is
about 8 kHz. Methods to extend the bandwidth of speech, primarily intended for telephony
applications, will be discussed in Chapter 6.

Bandwidth limitation in the transmission channel can also occur if perceptual audio
coders are used at high compression ratios; for example, in recent years MPEG1 layer-3
(a.k.a. MP3) has become a tremendously popular format for audio storage and trans-
mission. Perceptual audio coders achieve high coding efficiencies because they attempt
to store signal information with a low resolution, just ‘sufficiently high’ for the human
auditory system. For the MP3 scheme, this means, in practice, that a significant amount
of distortion is introduced in the signal, but the distortion spectrum is designed such
that it remains inaudible, for example, is masked (see Sec. 1.4.4.5). This in achieved by
analysing the short-term power spectrum of the audio signal and using a masking model
to compute the masked threshold, that is, a frequency-dependent curve below which dis-
tortion components will be masked by the audio signal. This is turn determines, per
frequency band, how many bits are needed to code the audio signal. Now, for very high
compression ratios, or equivalently, very low bit rates, the coding algorithm is not able
to keep all of the distortion below the masked threshold for the full-bandwidth signal.
Typically, the bandwidth is then reduced at the high-frequency end, such that the spec-
ified bit rate can be achieved for the bandwidth-limited signal, while at the same time
keeping the distortion below the masked threshold. The drawback is that high frequen-
cies are lost, resulting in a ‘muffled’ sound percept. Reviews of audio coding and audio
signal processing can be found in, for example, Bosi and Goldberg [37] and Kahrs and
Brandenburg [139]. Low-bit-rate perceptual audio coders are now being extensively used
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for audio storage on the Internet, distribution through Internet radio, satellite radio, and
private use such as with personal computers, MP3-players, and the like.

To enhance the reproduction of high-frequency bandwidth-limited audio, BWE process-
ing can be applied. Given that the reproduction system can reproduce high frequencies,
which is usually not a problem, synthetic frequency components can be added to the
signal, improving the quality thereof. Of course, the added synthetic frequency compo-
nents should be derived from the available bandwidth-limited signal, and for this two
approaches have been developed:

• In the first approach, the BWE algorithm is blind, that is, it has no information regarding
the missing high-frequency components. Thus, only assumptions on the statistics of
audio signals (Sec. 1.2) can be used to design such systems. The main advantages of
using this approach are that such a BWE system can be applied to a wide class of
signals (specifically, both to music and speech) and that there are no requirements on
the signal format, because the only required information is the actual signal waveform
(or spectrum). This means that such methods could also be used to enhance the quality
of old (analog) recordings. It also appears that computationally efficient algorithms can
be realized. The drawback is that the quality of the bandwidth-extended output signal
is significantly lower than that of the original full-bandwidth signal, even though it is
higher than the bandwidth-limited signal. This is due to the lack of information about
the missing high frequencies. This approach is the topic of Sec. 5.4.

• In the second approach, the BWE algorithm does have a priori knowledge regarding the
missing high-frequency components. This allows for a much more exact reconstruction
of the original full-bandwidth signal than is possible with the blind approach, and
therefore the quality of the bandwidth-extended signal can be (near) transparent, that
is, indistinguishable, from the original full-bandwidth signal. The high quality of the
output signal is obviously the main advantage of this approach. The drawback is that
some provisions need to be taken to provide the BWE algorithm with the requisite a
priori information. A successful approach is that of ‘spectral band replication’ (SBR),
the topic of Sec. 5.5. This is a method that works in combination with an ‘ordinary’
audio codec1, and stores (at a very low bit rate) some specific information about
high frequencies in the coded audio stream; in this way the overall required bit rate
can be significantly reduced. If the appropriate decoder is used, this information is
utilized to reconstruct the missing high frequencies. A decoder that cannot use the
additional information only decodes the low-frequency band, thereby insuring forward
and backward compatibility. SBR has been used to enhance the coding efficiency of
MP3, leading to MP3Pro, and also AAC (Advanced Audio Coding), leading to aacPlus.

A more conceptual difference between the two approaches mentioned here is that the first
attempts to extend the bandwidth of a signal that is, for whatever reason, bandlimited,
while the second attempt purposely limits the bandwidth of the signal, but does it in such
a way that at the output a high-quality full-bandwidth signal can be recreated.

Besides creating a ‘brighter’, more natural sound percept, high-frequency BWE pro-
cessing can potentially enhance localization of sound sources as well. Bronkhorst [40]

1
‘Codec’ is the concatenation of the words coder/decoder, referring to both the coding and decoding algorithms

used for a particular coding scheme.
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found that spectral cues above 7 kHz have a significant effect on localization perfor-
mance – by reducing the number of front/back confusions, and enabling the listener to
localize a sound source not only more accurately but also more quickly and with less
head movements. See also (Chapter 8) the patent by Dempsey on p. 257.

In Sec. 5.6, a method (BWE instantaneous compression) is discussed that would prop-
erly be categorized as a blind high-frequency BWE algorithm, but it is discussed separately
as it was not originally designed for BWE purposes. The original purpose of this algo-
rithm was to enhance reproduction of centre and surround channel signals in multi-channel
sound systems. Signals in these channels are often at a somewhat low level, and the algo-
rithm was designed as a simple means to boost their level, while preventing distortion at
high signal levels. The particular nature of the processing also extends the high-frequency
content of the signal spectrum, and as such it is also a BWE algorithm that works well in
this particular application; it is not generally applicable as are the methods of Secs. 5.4
and 5.5. Section 5.3 discusses the perceptual aspects of high-frequency BWE methods.

First, in Sec. 5.2, we briefly show that traditional methods (in particular, deconvolu-
tion) to overcome bandwidth limitations in transmission channels are not suitable for the
applications as discussed in this introduction.

5.2 THE LIMITS OF DECONVOLUTION

If a wideband signal x(t) is passed through a linear system h(t) having, for example, a
low-pass characteristic, the filtered signal xl(t) has a reduced bandwidth. We can write

xl(t) = x(t) ∗ h(t) , (5.1)

where ∗ denotes convolution.
If the received signal xl(t) is used to reconstruct an estimate x̂(t) of the original x(t),

we need to find a filter g(t) such that x(t) ∗ g(t) = δ(t − τ), with τ > 0. In that case, we
would have

x̂(t) = xl(t) ∗ g(t) = x(t) ∗ f (t) ∗ g(t) = x(t) ∗ δ(t − τ) = x(t − τ) , (5.2)

a perfect reconstruction, up to a finite time delay. The only condition on g(t) is that it
must be stable, which means that all its poles must lie within the unit circle (Sec. 1.1).
Now g(t) is simply the inverse of f (t) (up to the time delay τ ), which means that all
of f (t)’s zeros must lie within the unit circle, implying that f (t) be minimum phase.
Because f (t) must also be stable, its poles will also lie inside the unit circle, and by the
same argument as before, g(t) must then also be minimum phase. So we find that the
inverse of f (t) can only be obtained if it is minimum phase; the inverse filter g(t) will
then also be minimum phase. If f (t) is not minimum phase, a stable inverse filter does
not exist. See, for example, Neely and Allen [184] for a more elaborate discussion, in the
context of inverting room impulse responses. The process of obtaining x̂(t) from xl(t) is
called deconvolution, or inversion. In practice, there is a complicating factor in that the
received signal xl(t) will be corrupted by additive noise, wherefore Eqn. 5.1 becomes

xl(t) = x(t) ∗ f (t)+ ε(t), (5.3)
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where ε(t) is the noise. The optimal filter, in the sense that x̂(t) − x(t) is minimized
in least-squares sense, is then given in the frequency domain as (e.g. Berkhout et al.
[29], [30])

G(f ) = F ∗(f )

|F(f )|2 + σ 2
ε (f )

, (5.4)

with σ 2
ε (f ) the frequency-dependent variance (power) of ε(t), and F ∗(f ) the complex

conjugate of the Fourier transform of f (t). This optimal filter is also called a Wiener
filter, although the solution can be improved if the short-term spectrum �(f, k) of x(t)

is known (signal frame k), in which case the time-varying Wiener filter becomes

G(f, k) = �(f, k)F ∗(f )

�(f, k)|F(f )|2 + σ 2
ε (f )

. (5.5)

Of course, �(f, k) is not known, but a long-term average spectrum X(f ) might be known
or estimable, and could be used as well. Then the estimated spectrum X̂(f ) becomes

X̂(f ) = {X(f )}2|F(f )|2
X(f )|F(f )|2 + σ 2

ε (f )
. (5.6)

For high signal-to-noise ratio (SNR), the Wiener filter can be approximated as

G(f ) ≈ F−1(f ), σ 2
ε (f ) � |F(f )|2, (5.7)

such that g(t) is simply the inverse of f (t) as we found previously, and does not depend
on the signal spectrum. For low SNR this becomes, for the cases of Eqns. 5.4 and 5.5,
respectively

G(f ) ≈ F ∗(f )/σ 2
ε (f )

G(f, k) ≈ �(f, k)F ∗(f )/σ 2
ε (f )

}
σ 2

ε (f ) � |F(f )|2, (5.8)

which is the matched filter, as also known from signal detection theory, and does depend
on the signal spectrum. For a given situation, the approximations in Eqns. 5.7–5.8 can
be valid in different frequency bands. So those frequency bands having a low SNR will
be strongly attenuated, and the effect of f (t) can only be inverted if the SNR is high
or intermediate. The conclusion is that for bandlimiting operations, deconvolution is not
very effective, because the bandlimited frequency regions will usually have a poor SNR,
and the signal in those bands can therefore not be retrieved. This is true for a telephone
network, but, in particular, also for perceptually coded audio in which high frequencies
have been eliminated to reduce the required bit rate. In those cases, the high-frequency
band does not contain any useful signal any more, and other (non-linear) methods must be
used to restore (some of) the original signal parts. Because in audio applications there is
in general very little a priori information about the nature of the signals, more specialized
deconvolution methods are not practical.
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As an example, we use the situation of speech transmission through the telephone
network. Although a full treatment of speech enhancement processing is deferred until
Chapter 6, we use this example because (1) the bandlimitation (being the telephone net-
work) is very well defined, and (2) the long-term average spectrum of speech is known.
For general audio applications, both the bandlimitation as well as the signal spectrum
are not well defined (e.g. have a large variability). It should however be understood
that the forthcoming arguments regarding the limitation of deconvolution apply equally
well to speech transmission through the telephone network as to more general situations.
Thus, consider Fig. 5.1, which shows the approximate filtering characteristic of the tele-
phone channel F(f ) (see also Chapter 6 and Fig. 6.1) in (a) (solid line), together with
an assumed white noise spectrum σε(f ) at −30 dB (dashed line). Application of Eqn. 5.4
leads to a deconvolution filter G1(f ), the magnitude of which is shown in (b) (solid line).
Taking into account the long-term average spectrum of speech S(f ), shown in (c) (solid
line, calculated using Eqn. 1.24 and assuming an average male pitch of 125 Hz), we find
using Eqn. 5.5 a different deconvolution filter G2(f ), also shown in Fig. 5.1 (b) (dashed
line). We see that G2(f ) has a broad peak around 150 Hz and a narrower peak at about
4 kHz. The final received speech signal Sr(f ) = S(f )F (f )G2(f ) has a long-term aver-
age spectrum as shown in (c) (dashed line). In contrast to the speech signal, S0(f ) would
be received without any deconvolution filtering, shown as the dash-dotted line in (c),
the effect of G2(f ) is to accurately invert the telephone channel filtering down to about
200 Hz and up to about 4 kHz. Although this is an improvement, a lot of energy in the
speech signal is still not recovered, as is clear from Fig. 5.1. In particular high frequen-
cies, above 4 kHz (as contained mostly in fricatives such as /s/ and /f/), are not well
reproduced. Note that the Wiener filter is optimal from a signal’s point of view, and does
not necessarily yield that linear filter that gives the best perceptual result.

We do not give examples for the case of the music signals, as music spectra are
highly variable, and the bandlimiting is highly dependent on the coding algorithm and
bit rate used (assuming the bandlimitation occurs through perceptual coding). The reader
will understand that similar arguments as those made above for the example of speech
through the telephone channel lead to similar conclusions in that deconvolution is not a
practical method to restore highly bandlimited music signals.

5.3 PERCEPTUAL CONSIDERATIONS

In this section, the characteristics the synthesized high-frequency components should
have to properly enhance audio reproduction, by considering pitch, timbre, and loudness
are discussed. These considerations are useful to know what aspects of the available
narrowband signal should be reflected in the high band; for the high-frequency BWE
codec of Sec. 5.5 it also useful as it helps to realize what information the encoder should
store (and what is irrelevant), to be used as a priori information for the decoder.

5.3.1 PITCH (HARMONIC STRUCTURE)

The pitch of a complex tone is determined by the frequencies of the constituent partials
(harmonics), see Sec. 1.4.5. The strongest pitch percepts are obtained when low-order
(resolved) harmonics are present, but complex tones with only high-order (unresolved)
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Figure 5.1 (a) Shows the approximate filter characteristic F(f ) of the telephone net-
work (solid line), and an assumed white noise spectrum σε(f ) at −30 dB. (b) Shows
the optimal filter G1(f ) to invert this channel effect according to Eqn. 5.4 (solid line);
taking into account the long-term average spectrum of speech S(f ) (shown in (c), solid
line), the optimal filter G2(f ) becomes as is shown by the dashed line (b), using Eqn. 5.5.
Finally, (c) shows the long-term average spectrum of natural speech S(f ) and the received
speech S0(f ) without deconvolution filtering (dash-dotted line), and also for the received
speech Sr(f ) signal using the Wiener filter of Eqn. 5.5. It can be seen that the Wiener
filter improves reproduction down to 200 Hz and up to about 4 kHz, but that a significant
portion of speech energy (mainly that above 4 kHz) is not recovered
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harmonics also yield pitch percepts, although weaker. Ritsma [227] determined that har-
monics 3–5 are dominant in the perception of pitch. Such low-order harmonics would in
most cases fall outside the frequency range in which synthetic frequency components are
generated by high-frequency BWE algorithms, as the lower limit of this range is typically
4 kHz at least, but may be up to over 10 kHz. Therefore, frequency components added by
high-frequency BWE would typically be unresolved harmonics.

We assume that the input signal x(t) is a complex tone with fundamental f0. If x(t)

is bandlimited, only a finite number Nb of harmonics will be present at integer multiples
of f0. The high-frequency BWE algorithm should add additional frequency components
at kf0, with k = Nb + 1, Nb + 2, Nb + 3, . . . . Of course, without a priori information,
the correct amplitudes of these harmonics are unknown, but in most cases a gradually
decaying amplitude spectrum is suitable. By using a proper harmonics generator (non-
linear device, see Sec. 5.4.1), it can be ensured that the harmonic amplitudes do indeed
gradually decay.

If the generated frequency components do not fall onto the regular k = Nb + 1, Nb +
2, Nb+3, . . . pattern, a variety of effects could occur. If the spacing between the partials
is incorrect, or if the partials are shifted by an amount not equal to a multiple of f0, the
added harmonics will elicit a pitch at a different frequency. The signal comprising these
high harmonics would then be heard separately from the original complex tone, that is,
the signal bands segregate (see Sec. 1.4.7). Such a translation of the harmonic ‘grid’
could occur, for example, if the higher harmonics are generated through spectral folding
(Sec. 6.3.3.1).

Not all musical signals contain harmonically related frequency components however,
and particularly at higher frequencies noise-like signals can occur, for example, percus-
sion. In such cases, the extended frequency spectrum should also be noise-like.

5.3.2 TIMBRE (SPECTRAL ENVELOPE)

The explicit goal of high-frequency BWE is to extend the spectral envelope to high
frequencies, thereby modifying the sound’s timbre; the loss of high frequencies is the
reason that music and speech sounds muffled. As discussed in Sec. 1.4.6, timbre depends
on a number of variables, including amplitude spectrum, phase spectrum, and temporal
envelope (in particular, attack and decay times).

• The temporal envelope in a high-frequency band should be broadly similar to that in
a low-frequency band for most typical audio signals, so it would suffice if the BWE
algorithm ensures a more or less linear relationship between the two. This will be the
case if the non-linear device (NLD) is a homogenous system (Sec. 1.1.1).

• The phase spectrum is considered to be the most unimportant aspect in high-frequency
BWE applications. The lower limit of generated frequency components is typically
4 kHz (but possibly much higher), and at these frequencies the auditory system is fairly
insensitive to phase. It is possible that phase changes of adjacent frequency components
lead to modifications of the interference pattern produced at particular locations on the
basilar membrane (BM). Because auditory filters broaden with increasing frequency
(e.g. being 672 Hz wide at 4 kHz and 888 Hz wide at 8 kHz, according to Eqn. 1.88),
the likelihood of such interactions increases at high frequencies. It is conceivable that
certain phase changes could significantly change the overall amplitude of vibration
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at particular locations of the BM, and this would cause a change in neural response
(because neural response is directly linked to the amplitude of the BM vibration). In
this way, the amplitude spectrum as sensed by the auditory system could be modified
by phase changes of the physical signal spectrum. These effects are difficult to predict,
in particular because the signals arriving at the ears have a more or less random
phase (in the sense of a deterministically chaotic system) owing to the variations of
the impulse responses between loudspeaker and ears. Also, a study by Plomp and
Steeneken [210] found the effect of phase spectrum on timbre to be small compared to
the effect of amplitude spectrum, although in that study complex tones containing low-
order (<10) harmonics were used. For all these reasons, it is considered impractical
and not necessary to control for the phase of the synthetic high-frequency components.

• The amplitude spectrum, directly determined by the amount of high frequencies added
through the high-frequency BWE algorithm, is known to be important in determining
timbre. As before in Secs. 2.2.2 and 3.2.2, we model only the brightness aspect of
timbre that is closely linked to amplitude spectrum. Brightness is modelled by the
spectral centroid CS (Eqn. 1.95 in Sec. 1.4.6), with higher values for CS implying a
brighter sound percept.
If the original full-bandwidth signal is known, the BWE algorithm should obviously
be designed such that the reconstructed high frequencies closely match the original
high frequencies in amplitude spectrum. For blind BWE algorithms, the original high-
frequency spectrum is unknown, and the best approach is to smoothly ‘extrapolate’ the
signal spectrum to high frequencies. Typically, audio signals have gradually decaying
spectra (although resonances do occur). Such a ‘smooth’ extrapolation can be ensured
by a proper choice of the NLD, as is discussed in Sec. 5.4.1

5.3.3 LOUDNESS (AMPLITUDE)

The loudness of the harmonics signal is directly related to its amplitude. However, if
properly generated, the added harmonics will not be perceived separately, but as integral
part of the original narrowband signal (e.g. grouping will occur). This would also be
the case if the extended signal does not consist of regularly spaced harmonics, but is
noise-like. Therefore, we should consider the effect on the loudness of the, originally
narrowband, tone when adding higher harmonics.

Standardized loudness models such as ISO532A and ISO532B compute loudness on
the basis of the long-term amplitude spectrum of the signal. The amplitude spectrum is
specified in narrowbands (e.g. one-third octave bands for ISO532A and 0.1 Bark bands for
ISO532B) followed by an integration over frequency, also allowing for masking effects.
The details of each procedure differ and are explained in Sec. 1.4.4.2. The main conclusion
is that accepted models of loudness perception only take into account the amplitude
spectrum to compute loudness. Even Glasberg and Moore’s [90] more recent loudness
model that can be used for time-varying signals only takes the short-term amplitude
spectrum into account. So if a high-frequency BWE algorithm exactly reconstructs the
amplitude spectrum of the high-frequency band, the reconstructed signal should have the
same loudness as the original full-bandwidth signal. This is of course only possible for
BWE algorithms that employ a priori information. For blind algorithms, the reconstructed
high-frequency band will deviate from the original high-frequency band. Depending on
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the pattern and magnitude of these deviations, loudness of the reconstructed signal will
not be identical to the original signal’s loudness. However, some of these deviations might
not be perceptible, as masking effects can reduce or eliminate the contributions of some
frequency bands to the total loudness. Also, the largest contributions to loudness will
derive from intermediate frequency bands, around 1–4 kHz, where absolute thresholds
are lowest (ear is most sensitive). For typical high-frequency BWE applications, the
synthesized high frequencies will have a lower limit of at least 4 kHz, and possibly much
higher, so the entire contribution of the synthesized high frequencies is probably fairly
small anyway.

5.3.4 EFFECTS OF HEARING LOSS

Figure 1.19 shows hearing loss for a group of otologically normal males of various ages
(20–70 years) in terms of the 50th percentile points, as a function of frequency. For
frequencies below about 1 kHz, the loss remains below 12 dB, but above 1 kHz the amount
of loss increases rapidly. At 4 kHz, the amount of hearing loss for a 70-year-old male is,
on average, about 42 dB, and at 8 kHz (the highest frequency that was included) this is as
much as 60 dB. The same trend is observed for females, although somewhat smaller values
for hearing loss are typical. The implication is that older persons, on average, will not
perceive high frequencies contained in speech and music signals. The situation is probably
more aggravated for the latter category, as music signals contain more energy at higher
frequencies than does speech. For these persons, high-frequency bandwidth limitation
might not be perceivable at all, and conversely, they might not detect any enhancement
of the high-frequency spectrum obtained through high-frequency BWE processing. This is
confirmed by the fact that for A/B tests of high-frequency BWE systems younger listeners
often perceive clear enhancement, but no or little difference is detectable for older listeners
(who did not use hearing aids). From the limited experience gained through informal tests
of typical implementations of high-frequency BWE systems, this seems to be the case
for persons in the age group of approximately 40 to 60 years old (and presumably older
persons as well, although no listeners in that age group had been tested).

For individual listeners, this problem could be (at least partly) overcome by a linear
filter that emphasizes signal energy in those regions where hearing loss is severe. But in
almost all practical applications such flexibility is not implementable, and probably not
even desirable, as reproduced signals can be intended for a group of listeners. In the latter
case, a design must be sought that is the best ‘on average’, and definitely not annoying for
any single listener. In practice, this probably means that a high-frequency BWE system
would be designed to sound as good as possible for persons with no, or little, hearing loss
(typically younger listeners); persons with high-frequency hearing loss (typically older
listeners) will therefore, on average, benefit less or not at all, from high-frequency BWE
processing (unless the hearing loss is properly compensated for by a hearing aid).

5.3.5 CONCLUSIONS

For a high-frequency BWE algorithm to resynthesize a signal with correct timbre and
loudness, it suffices to match the spectral envelope of the original full-bandwidth signal.
Correct reproduction of the spectral fine structure is essential for a proper grouping of
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the synthesized high frequencies with the low frequencies. Persons with significant high-
frequency hearing loss will not benefit from high-frequency BWE methods.

5.4 HIGH-FREQUENCY BANDWIDTH EXTENSION FOR AUDIO

Although this whole chapter is devoted to high-frequency BWE for audio applications,
the title of this section reflects that here we will discuss implementations analogous to
the general structures discussed in Chapters 2 to 3. Other sections in this chapter present
alternate structures for high-frequency BWE algorithms. The general structure presented
here is shown in Fig. 5.2. Note the correspondence with BWE structures for low-frequency
psychoacoustic BWE (Fig. 2.4) and low-frequency physical BWE (Fig. 3.1). Again, there
are two branches, the lower of which simply delays the input signal x(t) such that it
is later added exactly in phase with the processed signal from the upper branch. The
processing consists of two filters and a non-linear device (NLD). The first filter, FIL1,
extracts the highest octave present in x(t), which is then the input for the NLD. The
non-linear processing generates a harmonics signal, which is filtered by FIL2 to obtain
a suitable spectrum. After scaling, the resulting signal is added back to x(t) to yield the
bandwidth-extended output y(t). In the remainder of this section, we will explore the
various processing steps in more detail.

Note that the signal x(t) must have enough ‘empty’ bandwidth at the high-frequency
end to synthesize the higher harmonics. At a sample rate fs, the highest frequency present
in the signal is maximally equal to the Nyquist frequency, fN = fs/2. If x(t) contains
energy at frequencies higher than fN/2 = fs/4, then x(t) first needs to be upsampled. In
all cases, there must be at least one additional octave above the highest frequency of x(t).

5.4.1 NON-LINEAR DEVICE

To ensure that the synthetic high-frequency band covaries in amplitude with the ban-
dlimited input signal, it is necessary to use a harmonics generator that is homogenous,
i.e. scales the output proportional to the input (Sec. 1.1.1). This also has the beneficial
property that the relative amount of harmonics generated is independent of the input
level. We intend to extend the bandwidth of x(t) by one octave; this yields a significantly

FIL1 FIL2NLD

DELAY

g

x (t ) y (t )

Figure 5.2 High-frequency BWE system. FIL1 extracts the highest octave present in
x(t), and harmonics of this signal are generated by NLD. The harmonics spectrum is
shaped by FIL2. The harmonics signal is then scaled and added to the delayed input
signal to form the bandwidth-extended signal y(t)
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brighter percept, yet does not suffer from artefacts that have sometimes been observed
when extending the bandwidth even further.

As FIL1 extracts the highest octave of x(t), which we denote as x0(t), the NLD must
therefore double the frequencies present in x0(t), leading to the harmonics signal xh(t).
Frequency doubling can be very efficiently done through rectification, as the spectrum of
a rectified pure tone consists mainly of its double frequency; the other components are
higher even harmonics, but these decay by 12 dB per octave (Eqn. 2.19 in Sec. 2.3.2.2)
and are thus quite weak. A rectifier is also a homogenous system. The intermodulation
distortion of a rectifier, given a two-tone input signal, was analysed in Sec. 2.3.2.2, and
displayed in Fig. 2.9. It was shown that the relative amount of intermodulation distortion
could be fairly high if multiple components of comparable amplitude are present in the
input signal. The results of this analysis cannot be directly used for high-frequency BWE
though, as in all cases the used expression was for continuous-time implementations of the
rectifier. As those sections dealt with low-frequency psychoacoustic BWE applications,
that approach was valid, because the frequencies of interest were at least two orders of
magnitude smaller than the sample rate. It can be shown that in the limit of very high
sample rates, expressions for NLD output spectra in continuous and discrete time are
equal. In the present case however, the frequencies of interest are in the same order of
magnitude as the sample rate. Specifically, if the spectrum of x0(t) lies in the range
[fs/8, fs/4], which would be fairly typical, high harmonics could only be added up to
fs/2 maximally. Thus, harmonics higher than the second harmonic cannot even exist in
such cases. This obviously alters the expressions for the output spectrum of a rectifier, and
also necessitates a re-evaluation of the relative amount of intermodulation distortion, given
a multiple-component input. The latter also differs from low-frequency psychoacoustic
BWE applications in another aspect, namely, for low-frequency psychoacoustic BWE it
is probably reasonable to assume that no more than two frequency components will be
present at the input to the NLD, as FIL1 in that case is typically a band-pass filter with a
bandwidth of about 50 or 100 Hz. For high-frequency BWE applications, FIL1 is a band-
pass filter with a bandwidth of several thousand hertz, and will in most cases contain
many frequency components. The correct expression for computing the output spectrum
of a rectifier in discrete time, given an arbitrary periodic input signal, is Eqn. 2.116.
The expression is fairly complex, and with the added variability of input signals (in
terms of number of components, and their frequencies), we have not derived expressions
to evaluate the amount of intermodulation distortion energy relative to the amount of
harmonic energy, as was done for the simpler case in Sec. 2.3.2.2. Rather, the quality of
the bandwidth-extended signal has been judged perceptually, using a variety of repertoire,
and the performance is generally considered to be good.

5.4.2 FILTERING

As with low-frequency psychoacoustic BWE and low-frequency physical BWE systems,
for high-frequency BWE the signal applied to the NLD needs to be a specific frequency
band, and the output of the NLD has to be shaped properly to yield a proper timbre. Thus,
it is necessary to use filters before and after the NLD, as in Fig. 5.2.

For both reasons mentioned in Sec. 2.3.3.3, it is beneficial to use linear-phase filters.
The first reason was that non-linear-phase filters can lead to interference between the



156 Audio Bandwidth Extension

processed (harmonics) signal and the original bandlimited signal, in the limited frequency
band where FIL1 and FIL2 overlap. As this is only a small frequency region, this might not
be as important as with low-frequency psychoacoustic BWE systems. The other reason
is that non-linear-phase filters can give rise to large variations in group delay, which
might lead the synthetic high-frequency signal to group poorly with the lower-frequency
bandlimited input signal. If FIL1 and FIL2 are both linear phase, their processing delay
can be exactly compensated for by a delay of the input signal, such that both harmonics
signal and input signal can be added in phase to form the bandwidth-extended output
signal. Because the bandwidths of FIL1 and FIL2 are fairly large compared to the sample
rate, it is feasible to implement these using FIR filters. Alternatively, IIR filters can be
used in the method as described in Sec. 2.3.3.3.

Because a typical application for a blind high-frequency BWE system would be to
enhance bandlimited signals as received from, for example, Internet radio, the band-
width of the incoming signal is not known a priori. Therefore, the passbands of FIL1
and FIL2 need to be adjustable to be able to adapt to whatever the momentary signal
bandwidth is. Two methods could be used to implement high-frequency BWE, depend-
ing on the bandwidth of the input signal. The first method simply assumes that the
signal bandwidth is equal to the Nyquist frequency, that is, half the sample rate. There-
fore, the input signal is first up-sampled by a factor of 2, after which the additional
octave is ‘filled’ with the synthesized higher frequencies. Although this method is not
guaranteed to work because of the simple assumptions, in practice, for Internet Radio
applications it has demonstrated to work quite well. A second, in principle more reli-
able, method is to analyse the energy content of the signal in various frequency bands,
for example, through a number of broad band-pass filters. In most cases, high-frequency
BWE will be applied to perceptually coded audio, and in those cases the bandwidth of
the signal can be detected by analysing the coefficients of the encoded audio stream
directly.

5.4.2.1 Filter 1

Assume that the bandwidth of the input signal is known (or estimated), and the highest
frequency component present is fh. Further, assume that the sample rate fs ≥ 4fh, possi-
bly through upsampling prior to BWE processing. As the NLD, being a rectifier, generates
second harmonics of the input signal, FIL1 should be band pass between fh/2–fh. The
high-pass flank of FIL1 can be designed as a second-order filter, while for the low-pass
flank a somewhat higher order, say fourth order, is better. This prevents frequencies
f ′ > fs/4 from entering the NLD (only if fh ≈ fs/4); if such frequencies did enter the
NLD, they would end up as aliased components at low frequencies, because 2f ′ > fs/2.
Although any low-frequency component generated by the NLD would be filtered out by
FIL2, it is generally beneficial to keep the number of frequency components entering the
NLD as small as possible, to minimize intermodulation distortion.

FIL1 could, in principle, be implemented as a filterbank, with each output driving
a separate NLD, the aim of which would be to minimize intermodulation distortion.
Some informal testing revealed that this strategy does not seem to lead to a significantly
better-quality signal, however.
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5.4.2.2 Filter 2

The input signal for FIL2 is the harmonics signal as processed by the NLD. Because
the input of the NLD is a frequency band fh/2–fh (the highest octave present in the
bandlimited input signal), the NLD output consists primarily of the second harmon-
ics of these components, that is, the frequency band fh –2fh. However, there will be
intermodulation distortion components at frequencies below fh, which have to be elim-
inated. Therefore, FIL2 has a high-pass flank of at least fourth order. This ensures that
the synthesized frequency components are only added at frequencies higher than those
contained in the input signal. Depending on the sample rate fs, a low-pass flank may
or may not be required. If fs = 4fh, then the harmonics signal extends maximally up
to 2fh = fs/2, and a low-pass flank is not required. If the sample rate is higher, a
low-pass flank can be implemented at a cut-off frequency of 2fh. The order of this low-
pass flank can be quite low, as the harmonics signal generated by the NLD (rectifier)
decays rapidly.

Figure 5.3 shows an example implementation of both FIL1 and FIL2. The input signal
has a bandwidth fh = 4 kHz, and the sample rate has been converted to 16 kHz. FIL1 is
a Butterworth band-pass filter from 2 to 4 kHz, with a second-order high-pass flank and
an eighth-order low-pass flank. FIL2 is a high-pass filter at 4 kHz, with an eighth-order
flank. It is not necessary to implement a low-pass flank for FIL2, as frequencies higher
than 8 kHz do not exist (as the sample rate is 16 kHz).
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Figure 5.3 Example implementations for FIL1 and FIL2 of a high-frequency BWE
system. It is assumed that the highest frequency present in the input signal is 4 kHz,
such that FIL1 extracts the highest octave therein. The NLD predominantly generates
second harmonics of these components, after which FIL2 ensures that any intermodulation
distortion component below 4 kHz is removed
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5.4.3 GAIN OF HARMONICS SIGNAL

As the high-frequency spectrum is not known a priori in a blind high-frequency BWE
system, the gain of the high-frequency spectrum relative to the low-frequency spectrum
is unknown. In practice, a gain value must be chosen that sounds well ‘on average’. It is
thus inevitable that on many occasions the high-frequency spectrum is either too strong
or too weak, compared to the actual high-frequency spectrum. However, these deviations
are not excessive, and in nearly all cases the bandwidth-extended signal is judged as more
natural compared to the bandlimited signal.

A conceptually simple improvement would be to use an adaptive gain. As there is no a
priori information, the control signal for the gain variations would have to be derived from
the bandlimited input signal. Some preliminary experiments indicated that this could lead
to a more accurate high-frequency percept. Specifically, the gain control signal was derived
by matching the energy of the artificially generated high-frequency band to the energy of
the actual high-frequency band, short (∼20 ms) time frames. This gain control signal was
then used to scale the synthesized frequency components. Obviously, this is not possible
in an actual application, but it demonstrated that it is possible to improve the quality of the
described blind high-frequency BWE algorithm by relatively simple means. Figure 5.4
shows an example, in which a 10-s fragment of pop music, bandlimited to 11 kHz, was
processed by the described high-frequency BWE algorithm (FIL1: 5.5–11 kHz, FIL2:
high pass at 11 kHz, NLD: rectifier); signal energy in 20-ms frames was computed for the
synthetic high frequencies. This was compared to the actual signal energy above 11 kHz
(the full-bandwidth signal was also available), the result of which is shown in the figure.
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Figure 5.4 ‘Optimal gain’ calculated for a 10-s pop music signal. The gain was derived
by comparing the actual signal energy above 11 kHz with the energy of the synthetic
high-frequency signal as generated by the high-frequency BWE algorithm. The dashed
line indicates the mean (∼8.2 dB)
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This ‘optimal gain’ (in the sense that it matches the high-frequency energy) varies around
a fairly stable mean value of ∼8.2 dB, although occasional large deviations occur (e.g.
around 2.5 s). Although the ‘mean optimal gain value’ varies per repertoire, a ‘grand mean
value’ can be chosen such that fairly good results are obtained for most repertoire. Note
that appreciation of individual listeners will vary, which may in part be due to differences
in hearing loss at high frequencies (Sec. 5.3.4).

The problem in deriving a practical gain control signal using only information from the
bandlimited input signal might conceptually be solved in similar fashion as is done for
speech BWE algorithms. Section 6.5 describes what features of the narrowband speech
signal are thought to carry some information regarding the high-frequency spectral enve-
lope. For speech, this approach works reasonably well, but it might be much more difficult
for music, as music signals have a much larger range of variability than speech signals.
Also, the amount of speech bandwidth limitation is well defined through the telephone
channel (being about 300–3400 Hz), but this is not the case for the more general situation
where bandwidth limitation occurs through perceptual coding. Depending on the bit rate
and the coder implementation, the bandwidth can vary from less than 4 kHz to full band-
width (∼22 kHz). For each degree of bandlimitation, another set of parameters would
have to be defined to translate narrowband signal features to high-band spectral enve-
lope. Therefore, it remains to be seen if such an approach could work, while remaining
practically feasible, for general audio applications.

5.5 SPECTRAL BAND REPLICATION (SBR)

Spectral Band Replication (SBR) is a technique to enhance the efficiency of perceptual
audio codecs (Ekstrand [111], Kunz [153], Schug et al. [241]). High-frequency compo-
nents of an audio signal are reconstructed from low-frequency components by the decoder,
such that the encoder need only encode the low-frequency part. In this fashion, a bit-rate
reduction can be achieved while maintaining subjective audio quality. The basic idea of
SBR is based on the observation that characteristics of high-band signals typically exhibit
quite a high correlation with those of the lowband signals. Therefore, it is often possible
to replace the high band with a transposed version of the lowband, avoiding the need
to transmit the high-band signal at all. This can obviously reduce the required bit rate.
SBR encodes a bandlimited version of the audio signal using conventional means, and
then recreates the high band in the decoder. The difference with blind methods, such as
those discussed in Sec. 5.4, is that the encoder provides a very small amount of additional
control information (5–10% of the total), which the decoder uses to shape the high-band
spectrum. This process is illustrated in Fig. 5.5. The control information is multiplexed
with the encoded data into a single bitstream; the decoder first de-multiplexes the bit-
stream, decodes the lowband signal, and uses a high-frequency BWE algorithm to recreate
the high-band signal, thereby using the control data to optimize the BWE processing.

The most important part of the SBR data is the information describing the spectral
envelope of the original high-band signal (Dietz et al.[61]). Its main design goal is to
use it as an equalizer without introducing annoying aliasing artefacts, and to provide
good spectral and time resolution. The core algorithm of SBR consists of a 64-band,
complex-valued polyphase filterbank (QMF). At the encoder side, an analysis QMF is
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Figure 5.5 Spectral band replication (SBR) acts as pre-processor at the encoder and as
post-processor at the decoder. A small amount of control data is provided along with the
encoded lowband signal, which the decoder uses to optimize the high-frequency BWE
algorithm

Table 5.1 SBR data rates for a number of
example configurations. The total bit rate
(audio coding and SBR data) is shown in
the left-hand column, the number of used fre-
quency bands in the middle column, and the
SBR data rate in the right-hand column

Bit rate SBR freq. range SBR data
mono [kb/s] # QMF bands rate [kb/s]

16 21 1.2
24 24 2.0
32 29 2.5
48 32 3.5

used to obtain energy samples of the original input signal’s high band, which are used
as reference values for the envelope adjustment at the decoder side. In order to keep
the overhead low, the bitstream format of aacPlus2 allows to group the QMF bands into
scalefactor bands. By using a Bark-scale-oriented approach, grouping frequency bands
may result in wider scalefactor bands the higher the frequency gets. Table 5.1, from

2
The combination of AAC with SBR is named aacPlus, which is a registered trademark of Coding Technologies.
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Dietz et al. [61], shows typical SBR data rates for a number of example configurations.
The SBR method is obviously non-blind, as control parameters are used to create the
high-frequency signal; however, a blind mode is possible as well, as explained in the
patent discussed in Chapter 8.

In some cases, subjectively unsatisfactory results are produced when the low- and high-
frequency bands are weakly correlated. This can occur with signals that are predominantly
harmonic in the low-frequency range, but more noise-like in the high-frequency range (or
vice versa), for example, having tonal instruments at low frequencies together with a
hi-hat or cymbals at high frequencies. In such cases, additional information is encoded to
indicate the need for synthesizing additional noise or additional tonal components at the
decoder, such that the reconstructed high band will be similar to the original.

The combination of SBR technology with the conventional waveform audio coder
standardized in MPEG, Advanced Audio Coding (AAC), is discussed in Ehret et al.
[62]. With this enhanced audio coding scheme, called aacPlus, it is possible to achieve
high-quality stereo audio at bit rates as low as 40 kb/s. The structure of the aacPlus
decoder is shown in Fig. 5.6. After demultiplexing the aacPlus bitstream, the standard
AAC bitstream is converted into a bandlimited audio signal. Then the SBR decoder
generates high frequencies from the QMF-filtered bandlimited audio, ensuring a proper
spectral envelope by using the SBR data. The high- and low-band QMF signals are then
synthesized into a full-bandwidth output signal.

SBR technology is especially interesting in applications in which very high compression
efficiency is desired, usually motivated by cost or physical limitations. Examples of such
application areas are digital broadcasting and mobile applications. An overview of the
latest developments with respect to the standardization process of aacPlus within MPEG-
4 and subjective verification results are given in Ehret et al. [62], while implementations
are described in Homm et al. [112].
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Figure 5.6 Block diagram of the aacPlus decoder. After demultiplexing the aacPlus
bitstream, the standard AAC bitstream is converted into a bandlimited audio signal. Then
the SBR decoder generates high frequencies from the QMF-filtered bandlimited audio,
ensuring a proper spectral envelope by using the SBR data. The high- and low-band QMF
signals are then synthesized into a full-bandwidth output signal
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Figure 5.7 MUSHRA test results for various codecs at a stereo bit rate of 48 kb/s. The
best result was obtained by aacPlus, followed by MP3Pro, which both use SBR technology

aaCPlus has been subjectively evaluated by several independent listening test sites.
The results of all these tests have shown that aacPlus is a very good codec. For example,
Fig. 5.7 shows the results of a MUSHRA test3, carried out in the course of the EBU
Internet audio evaluation, in which several audio-coding schemes were compared (cited
by Dietz et al. [61]). Eight codecs were tested, and their results can be compared to
two standards, namely the original, or reference signal (score nearly 100), and a 3.5-kHz
low-pass filtered signal (score 20). The figure shows the result of the test for a stereo bit
rate of 48 kb/s. The aacPlus decoder was judged as yielding the highest quality signal,
with a score of 80 (on the border between ‘good’ and ‘excellent’). The average score of
the other codecs was about 50 (‘fair’). The score of the core AAC codec was about 65.
Another codec that has been integrated with SBR is MP3, called MP3Pro (Gröschel et al.
[101]). Figure 5.7 shows that MP3Pro has the second-highest test score, nearly 70. The
core MP3 coder received a score of just below 40.

5.6 HIGH-FREQUENCY BANDWIDTH EXTENSION
BY INSTANTANEOUS COMPRESSION

5.6.1 INTRODUCTION AND ALGORITHM

A special form of BWE can be achieved by audio compression. This approach is especially
suitable for multi-channel sound reproduction, in which the processed signals are predom-
inantly speech or special effects. One of the disadvantages of multi-channel material is

3
The MUSHRA scale range is 0–100, where 0–20 means ‘bad’, 20–40, ‘poor’, 40–60, ‘fair’, 60–80, ‘good’

and 80–100, ‘excellent audio quality’.
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that the surround-sound signal is often at a very low level. If the surround signal is sim-
ply linearly increased, it can become too dominant, or even lead to audible distortion in
either the amplifier or loudspeaker. The same is true for the centre signal, which is often
used for dialogues. Here we develop and analyse in instantaneous compression, algorithm
that can enhance signals for centre and surround channels. This method is not generally
applicable, because for music it does not yield good results; therefore the algorithm is not
applied to the left/right loudspeakers of the multi-channel system.

Whereas the initial goal of the described compression algorithm was to overcome the
problems of low signal level in centre and surround channels, it was also realized that it is
a special kind of a BWE system. At high signal levels, where compression is most active,
harmonic frequencies are generated and add some ‘brilliance’ to the sound. In contrast to
what is normally desired of a BWE system, this ‘BWE compressor’ is not a homogeneous
system (i.e. it does not scale its output proportionally to its input, see Sec. 1.1.1), and
it is most effective at high signal levels (while e.g. low-frequency psychoacoustic BWE
should be more effective at low signal levels, see Sec. 2.3.4). It is also different from other
BWE algorithms as it uses the entire bandwidth of the input signal to generate harmonics,
that is, the BWE compressor consists only of a non-linear device (NLD), without pre- or
post-processing.

The BWE compressor uses a function that has a gain at low and moderate signal levels,
but an attenuation at high signal levels. It is different from more usual compressors in
that it is memoryless, that is, it is an instantaneous compressor. Any anti-symmetric
monotonous function with a positive but decreasing derivative can be used in principle.
During experiments, it appeared that the function

y(x) = c1 tanh(c2x), (5.9)

plotted in Fig. 5.8 (for c1 = c2 = 1) is a suitable choice. The constant c1 determines the
maximum output level and c2 determines the gain at low signal levels. During experiments,
it appeared that for |x| ≤ 1 suitable values for these constants are c1 = 0.763, and
c2 = 4.19. For these values, the instantaneous input–output function is shown in Fig. 5.9.
Using the Taylor series expansion,

tanh(x) = x − x3

3
+ 2x5

15
− 17x7

315
+ · · · for |x| < π/2, (5.10)

we get for small x that y/x = c1c2 ≈ 10 dB for the given values of c1, c2.

5.6.2 ANALYSIS OF HARMONICS GENERATION

In order to study the bandwidth extension of the NLD given by Eqn. 5.9, we assume
an input signal x(t) = A sin(2πt), and calculate the coefficients bn of the Fourier series
of y(x)

tanh(A sin 2πt) =
∞∑

n=0

bn sin 2π(2n+ 1)t, (5.11)
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Figure 5.9 The instantaneous input–output ‘transfer function’ of the BWE compressor:
c1 tanh(c2x)/x, for c1 = 0.763 and c2 = 4.19. These values are suitable for signals that
are ±1 at full scale

After some calculations4 involving the calculus of residues, we find

bn = 8

A

∞∑
k=0

1

u2n
k (1+ u2

k)
, (5.12)

4
Private communication with A.J.E.M. Janssen, Dec. 2002.
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and

uk = π(k + 1/2)

A
+
(

1+
(

π(k + 1/2)

A

)2
) 1

2

, k ∈ IN0. (5.13)

For large A, we can approximate the bn by ignoring terms containing powers of 1/A

higher than five, which yields

bn = 4

π

1

2n+ 1
− (2n+ 1)π

6A2 − 7(2n+ 1)π3

60A4 (2− 1

6
n(n+ 1)), n ∈ IN0. (5.14)

For very large A, the output signal will tend to a square wave, which can be made explicit
by taking limA→∞ and showing

lim
A→∞

bn = 8

A

∞∑
k=0

1

u2n
k

1

(1+ u2
k)
= 4

π

1

2n+ 1
, (5.15)

so that we get, as we should, the familiar Fourier series coefficients of a square wave. On
the other hand, for very small A, the output and input signals are proportional, because
we get b0 = A and bk = 0 for k ∈ IN\{0}. This was also directly obvious from Eqn. 5.10.

5.6.3 IMPLEMENTATION

With analog components, Eqn. 5.9 can be easily implemented, using a long-tail pair with
two transistors. On a digital platform, there are several possibilities. If the platform used
is capable of directly implementing Eqn. 5.9, this would be the easiest way. If this is not
the case, Eqn. 5.9 can be approximated by a power series. The Taylor series expansion of
Eqn. 5.10 is not suitable, since this is only accurate for small |x|, while we are interested in
the range |c2x| ≤ 1 (where |x| ≤ 1). Therefore, we use a power series with an �∞–norm
using a NAG [182] routine, based on a Chebyshev approximation (Barrodale and Phillips
[25]). It appears impractical to use only one polynomial for the whole range, and therefore
we use (for the case that c2 = 4.2) two ranges, namely |c2x| ≤ 1 and |c2x| > 1. This
yields the following result

tanh(x) ≈ ŷ(x) = x

3∑
k=0

akx
2k for |x| ≤ 1 (5.16)

and

tanh(x) ≈ ŷ(x) = sign(x)

7∑
k=0

bk|x|k for 1 < |x| ≤ 4.2 (5.17)

where z = c2x.
The order of the approximation is chosen such that the maximum error is equal to about

2−15, which is suitable for 16-bit systems. If a lower or higher degree of approximation
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Figure 5.10 The error � = tanh(z)− ŷ(z). The solid line shows the approximation error
of Eqn. 5.16; the dotted line shows the approximation error of Eqn. 5.17. The coefficients
ak and bk are as given in Sec. 5.6.5

is required, all coefficients ak and bk have to be recomputed again, since, as opposed to a
Taylor series, the coefficients of a Chebyshev approximation depend on the order of the
approximation. The approximation error, using Eqns. 5.16 and 5.17, and the coefficients
ak and bk as given in Sec. 5.6.5, is plotted in Fig. 5.10.

5.6.4 EXAMPLES

Here we present some example signals and their processed versions, to illustrate the
effects of BWE compression processing. Figure 5.11 shows four histograms displaying
the amplitude distribution of two different input and output signals. All signal values were
contained in [−1, 1], and the processing used coefficients c1 = 0.763 and c2 = 4.19. The
histograms have 50 equally spaced bins, and the value displayed for each bin is the
log (base 10) of the number of occurrences that the signal value was in the bin range.
Figure 5.11 (a) shows the amplitude distribution for a 60-s fragment of a pop music
signal, which is nearly full scale, assuming that the transducer limits are ±1. A linear
amplification of this signal would lead to clipping distortion. Part (c) shows the sig-
nal distribution after BWE compression. It is obvious that the maximum values of the
signal have been reduced to c1 = 0.763, and that the overall distribution has become
flatter (as low-valued samples of the signal have been amplified). Part (b) displays the
amplitude distribution for the same signal as in part (a), but scaled down by a fac-
tor of 10. BWE compression leads to an amplitude distribution as shown in part (d).
Because of the small signal values, the compressor operates in its linear region, and as
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Figure 5.11 Histograms of a 60-s excerpt of music. Histogram values indicate number of
occurrences per bin (log–base 10) of the signal value. Part (a) shows a signal that is close
to full scale, and part (c) shows the BWE-compressed version. Note that the maximum
signal value has decreased and the distribution has become flatter. Part (b) shows the
signal of part (a), but scaled by a factor of 0.1. Part (d) is its BWE-compressed version,
which shows only a linear scaling and no change in shape of the distribution (no flattening)

a result the signal distribution does not change shape (it has not become flatter as in
part (b)).

It is also instructive to visualize the modifications generated by BWE compression in
the time–frequency domain. Figure 5.12 (a) shows the spectrogram of the first 10 s of the
input signal (the amplitude distribution of which is shown in Fig. 5.11) (a); in all spec-
trograms, black indicates high energy, and white indicates low energy (dB scale). Note
that there is a gradual roll-off above 3 kHz and an abrupt high-frequency limit at about
5 kHz. The spectrogram of the BWE-compressed signal, shown in part (b), displays much
more energy in the high-frequency region, up to the Nyquist frequency. The transients
(recognizable as dark vertical lines) are clearly enhanced. Also, some of the complex
tones have enhanced harmonics, for example, the harmonics below 1000 Hz, just before
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Figure 5.12 Spectrograms of a 10-s excerpt of music (the amplitude distribution of
which is shown in Fig. 5.11) (a), and its BWE-compressed output in part (b). The input
signal is somewhat bandlimited, whereas the output shows enhanced transients and more
high-frequency content

4 s; although difficult to see in this fashion, it can be clearly observed when switching
the spectrograms on a computer screen.

Figure 5.13 shows two spectrograms, the upper one displaying the time–frequency
energy distribution of the same input signal as previously, but scaled down by a factor of
10 (as in Fig. 5.11 (b)). Note that all signals have been normalized before time–frequency
analysis, such that any changes in the spectrograms are not due to overall level effects, but
indicate relative changes in energy distribution in the time–frequency domain. Figure 5.13
(b) shows the BWE-compressed output, and exhibits only a modest enhancement of high
frequencies, as we would expect, given that for low levels the compressor operates in its
(near) linear regime. Also, the enhancement of low harmonics is not as pronounced as
for the higher-level signal of Fig. 5.12.

5.6.5 APPROXIMATION OF THE FUNCTION tanh(Z)

In order to derive an approximation of the function tanh(x), a power series with
an �∞–norm and a NAG [182] routine, based on a Chebyshev approximation (Barrodale
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Figure 5.13 Spectrograms of a 10-s excerpt of music, the same as in Fig. 5.12 (a),
but scaled down in amplitude by a factor of 10. Its BWE-compressed output is shown
in part (b). Because of the low signal level of the input, the compressor operates in its
(near) linear regime, and there is only a modest enhancement of high frequencies; overall
the two spectrograms are very similar (much more so than the spectrograms of Fig. 5.12)
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Figure 5.14 The error � = tanh(z)− ŷ; same as Fig. 5.10, but zoomed in around z ≈ 1
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and Phillips [25]), was used. Using Eqn. 5.16 and 5.17, we get the following
algorithm:

x =~c_2*x

IF |x| <= 1 THEN

x2 = z^2
y=c_1*x*(0.9997 + x2*(-0.3289 + x2*(0.1154 -~x2*0.02465)))

ELSE

xa = |x|
y = c_1*sign(x)*(-0.1694 + xa*(1.6489 + xa*(-0.9587 + xa*(0.2713

+ xa*(-0.02786 + xa*(-0.003742 + ...
xa*(0.001199 + xa*(-0.00008518))))))))

END

This yields an approximation error as plotted in Fig. 5.14. To avoid a discontinuity in
the transition area between both approximations (x ≈ 1), the coefficients are chosen such
that the sign of the errors for both approximations are the same, and the magnitudes are
about equal.
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Bandwidth Extension for Speech

Peter Jax
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In this chapter, the problem of speech enhancement by artificial bandwidth extension is
addressed. Whereas in the preceding chapters the signal processing was mostly based
on properties of the human auditory system, that is, of the signal sink, the bandwidth
extension of speech signals uses properties of the signal source. Hence, here we restrict
our view to those bandwidth extension approaches that perform adaptive signal processing
according to the well-known time-varying source-filter model of speech production. Note
that any of the methods described in the other Chapters 2, 3 and 5 in general can as well
be applied to speech signals yet often with lower quality than specialized algorithms due
to the lower amount of a priori information that is utilized.

The typical application of bandwidth extension for speech is due to the basic design
of speech transmission systems: in current digital public telephone systems the acoustic
bandwidth of the transmitted speech signal is usually still limited to the frequency range
of the old analogue telephone system, that is, to about 300 Hz to 3.4 kHz. This bandwidth
limitation causes the characteristic sound of telephone speech.

The minimum requirements on the bandwidth of analogue speech communication sys-
tems was specified in the CCITT Red Book from 1961 (see, e.g. Schmidt and Brosze
[237]): at the cut-off frequencies of 300 Hz and 3.4 kHz the transmission level may be
attenuated by no more than 10 dB with regard to the level at the reference frequency
of 800 Hz (ITU-T Rec. G.132 [121], Rec. G.151 [122]). The reasons for the bandwidth
limitation at that time were the use of analogue frequency-division multiplex transmis-
sion with a frequency grid of 4 kHz, and the optional use of sub-audio telegraphy for
out-of-band signalling. The minimum bandwidth of 300 Hz to 3.4 kHz was specified to
guarantee an intelligibility of sentences of about 99% from clean telephone speech.

Nowadays, the public telephone system has almost completely been converted to dig-
ital transmission techniques. According to the international standard ITU-T Rec. G.711
[123], the speech signals are sampled at a sampling frequency of 8 kHz, and the samples
are quantized using the A-law respectively µ-law PCM-encoding laws, yielding a bit rate
of 64 kb/s. A strict upper limit of 4 kHz on the transmitted frequency range is enforced by

Audio Bandwidth Extension E. Larsen and R. M. Aarts
 2004 John Wiley & Sons, Ltd ISBN 0-470-85864-8
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Figure 6.1 Design constraints from ITU-T Rec. G.712 [124, Sec. 1, 2] for PCM speech
transmission. The reference value (0 dB at 1000 Hz) for the attenuation distortion is
marked by the filled circle in the upper diagram. The minimum value of the group delay
(here: 224 µs at 1621 Hz) is taken as the reference for the group delay distortion. The
solid curve gives an example of admissible filter characteristics

the sampling frequency of 8 kHz. Because the implementation of digital circuits in existing
networks was performed by successive replacements of analogue circuits, the constraints of
the old analogue system applied. The required performance characteristics of PCM trans-
mission channels are specified in detail in the standard ITU-T Rec. G.712 [124]. The design
constraints with respect to attenuation and group delay are illustrated in Fig. 6.1.

For mobile radio telephony systems, a further limitation of the frequency range is
specified to reduce the amount of disturbing low-pass background noise. In GSM, for
example, both the sending and receiving sensitivity of headset or handset mobile terminals
shall provide an attenuation of at least 12 dB for low frequencies below 100 Hz (ETSI
Rec. GSM 03.50 [68]).

Compared to natural speech, telephone speech has a significantly degraded quality: the
removal of low frequencies below about 300 Hz leads to a reduction of the loudness of
the speech, leading to a ‘thin’ voice. In spite of this absence of the fundamental harmonic
in the bandlimited speech, a human listener can still perceive the virtual pitch from the
harmonic structure of the remaining overtones (Zwicker and Fastl [309], Terhardt [267]),
see Sec. 1.4. The elimination of high-frequency components beyond 3.4 kHz, on the other
hand, leads to a reduction of the transparency and articulateness of the speech. The
bandlimited telephone speech sounds somewhat ‘muffled’.

Because both the high- and low-frequency speech components contain some speaker-
dependent characteristics, their absence in the bandlimited speech makes it sometimes
difficult for a human listener to identify the conversational partner.
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Figure 6.2 Impacts of a bandwidth limitation on speech intelligibility and subjective
quality. In part (a), the intelligibility of meaningless syllables in low-pass respectively
high-pass filtered speech is illustrated (data from Terhardt [267]). (b) This compares the
speech quality, measured in terms of the subjective mean opinion score (MOS), of band-
pass-filtered speech with different lower (fbb,l) and upper (fbb,u) cut-off frequencies (data
from Krebber [148])

Speech Intelligibility

The relevance of high- and low-frequency speech components for the speech intelligibility
is pointed out in Fig. 6.2 (a). The diagram shows the intelligibility of (individually) low-
pass or high-pass filtered meaningless syllables (French and Steinberg [76], Terhardt
[267]). It can be observed that the intelligibility is quite high for the band limits of
the telephone band-pass: low-pass filtering with a cut-off frequency of 3.4 kHz yields
intelligibilities around 91%, while high-pass filtering at 300 Hz leads to an intelligibility
of about 98%.

The intelligibility of meaningless syllables from telephone speech is about 90%, thus
making it sometimes necessary to use the spelling alphabet to communicate words that
cannot be understood from the context, for example unknown names. The intelligibility
of whole sentences from clean telephone speech, however, is around 99% (Brosze et al.
[41], Schmidt and Brosze [237]). Thus, potential benefits of bandwidth extension in terms
of the intelligibility of sentences seem to be quite small. Nevertheless, an improvement
of the intelligibility of syllables would make the communication more comfortable and
less strenuous in many cases, that is, the listening effort would be reduced.

Subjective Speech Quality

Listening experiments have shown that the acoustic bandwidth of speech signals con-
tributes significantly to the perceived speech quality (Krebber [148], Voran [291]). This
fact is illustrated in the right diagram of Fig. 6.2 (b), which shows the results of eval-
uations of subjective speech qualities for clean band-pass-filtered speech. The speech
quality is expressed in terms of the mean opinion score (MOS), which reflects the sub-
jective rating by human listeners on a scale between one (unacceptable quality) and five
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(excellent quality). The two points in Fig. 6.2 (b) that are marked by circles indicate the
scores for telephone speech (3.2 MOS points) and ‘wideband’ speech (4.5 MOS points),
respectively.

Starting from the bandwidth of telephone speech (300 Hz to 3.4 kHz), the expansion
of the bandwidth both towards low and high frequencies leads to significant gains of the
achieved MOS scores. The best scores are obtained by a symmetric expansion towards
low and high frequencies. In comparison to telephone speech, typical wideband speech
with a bandwidth of 50 Hz to 7 kHz yields a considerable maximum gain of about 1.3
MOS points.

6.1 APPLICATIONS

Owing to the importance of the acoustic bandwidth for speech intelligibility, and especially
for the subjective quality, it seems to be worthwhile to aim at an expansion of the trans-
mitted acoustic speech bandwidth. Particularly, in digital communications and hands-free
telephony, there is a demand for enhancing the subjective speech quality. True wideband
speech communication requires a modification of the transmission link – enhanced speech
codecs have to be employed on both sides of the link. Accordingly, several wideband
speech-coding schemes have been investigated in the past, aiming at the increase of the
acoustic bandwidth to 50 Hz to 7 kHz. In the 1980s, the G.722 codec was standardized by
ITU, with bit rates of 64, 56, and 48 kb/s mainly targeting the applications of teleconfer-
encing and ISDN telephony (ITU-T Rec. G.722 [125], Maitre [165]). Later the G.722.1
codec [126] was added with bit rates of 32 and 24 kb/s. Recently, the adaptive multi-rate
wideband (AMR-WB) codec algorithm (several modes with bit rates from 23.85 down
to 6.6 kb/s) was developed and standardized by 3GPP and ETSI [2], Bessette et al. [31].
This codec family has also been adopted by the ITU [127]. The implementation of the
AMR-WB codec is projected for GSM and 3GPP WCDMA networks.

However, for economical reasons, the bandwidth limitation is not likely to change
on a broad scale in the near future. It is very likely that, at least for some transitional
period, the telephony network will be a mixed network, comprising both narrowband-
and wideband-capable terminals.

An alternative approach towards an enhanced acoustic bandwidth of the received speech
signal is artificial bandwidth extension (BWE) of speech. The challenge of BWE in
speech transmission is illustrated in Fig. 6.3: the wideband microphone signal swb is band-
pass filtered prior to analogue-to-digital conversion and transmitted across the telephone
network. At the receiving terminal, only the narrowband signal snb is available. This
bandlimited speech signal is analysed by the bandwidth extension system. The missing
low- and/or high-frequency signal components are estimated and added to the received
base-band components. By this, the algorithm determines an estimate s̃wb of the wideband
speech that is passed on to the loudspeaker.

Telephone
band-pass A

A D
D

Source coding
& transmiss.

Bandwidth
extension

swb snb s̃wb

Figure 6.3 Artificial bandwidth extension in digital speech transmission
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The application of bandwidth extension is, in principle, independent of the sending
side of the transmission link and of source coding and transmission methods. Hence, the
bandwidth extension approach is fully compatible with the existing speech communication
infrastructure. It must be emphasized that the concept of artificial bandwidth extension
should not be considered to be antagonistic to true wideband coding – on the contrary,
it constitutes a harmonious extension to wideband speech services, because it can help
reduce the quality variations between the different speech signals in a mixed mode net-
work. Possible fields of application for artificial bandwidth extension systems include the
following ones:

• Artificial bandwidth extension can be implemented in a (receiving) terminal equipment
as depicted in Fig. 6.3. Then, the user of the terminal gets an improved speech quality,
albeit the sending terminal is only capable of narrowband speech transmission. The
implementation of bandwidth extension is attractive for manufacturers with respect to
the competition on the terminal market.
It must be noted that there are certain physical constraints caused by the rather small
size of modern mobile handsets, particularly for playing low-frequency signals via
small loudspeakers (compare Chap. 2). Some loudspeakers have lower cut-off fre-
quencies of up to 1000 Hz, particularly if the small loudspeaker of a mobile phone
is operated in hands-free mode. With handsets, the transfer function from the loud-
speaker to the ear strongly depends on the positioning of the handset at the ear. If
the auricle is not tightly sealed, an acoustic leakage occurs, which impairs the trans-
fer function particularly at low frequencies (Krebber [148]). In many cases, with the
aforementioned physical constraints, physical speech bandwidth extension towards low
frequencies does not make much sense since the extended signal components cannot
be provided to the listener.
For the design of the bandwidth extension algorithm, it should be regarded that, in
general, source coding has been applied within transmission. For example, in ISDN
the A-/µ-law, PCM-encoding rules from ITU-T Rec. G.711 [123] are used, or in GSM
one of the speech codecs specified in ETSI is utilized. It can be observed, however,
that coding distortions do not have a major detrimental effect on bandwidth extension,
but on the other hand the extension algorithm can benefit from adopting dequantized
parameters from the speech decoder.

• In a mixed mode speech communication network, comprising both narrowband- and
wideband-capable terminals, artificial bandwidth extension can be implemented within
network nodes for transcoding from narrowband codecs to wideband codecs. This is
especially beneficial if switchings between narrowband and wideband transmission
modes occur, for example, due to handovers in mobile radio access networks [1,
Sec. 27].

• If so-called wideband speech (typical frequency range: 50 Hz to 7 kHz) is already
available, it is possible to perform bandwidth extension towards ‘super-wideband’
speech, that is, with a target frequency range of up to 16 kHz. For example, in low bit-
rate MPEG coding, a special speech mode without need to send extra side information
as in spectral band replication (SBR) audio coding is possible, or the speech quality
of wideband speech codecs can be improved further. This application is even more
promising than the extension of telephone speech because the uncertainty of ‘super
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high frequency’ speech components (e.g. between 7 and 16 kHz) is lower and more
information can be gained from the available wideband speech signal.

• Bandwidth extension techniques are commonly used within wideband speech codecs,
for example, in Dietrich[60], Taori et al. [265], in the split-band CELP (SB-CELP)
family of speech codecs, such as Paulus [206], Schnitzler [238], Erdmann et al. [67]),
and in the AMR-WB codec [3]. However, in these approaches mostly the bandwidth
extension is applied to a quite narrow frequency band at very high frequencies, for
example, only to the signal components between 6 and 7 kHz. Furthermore, the exten-
sion can be supported by transmitting side information (compare the spectral band
replication (SBR) techniques for audio coding in Sec. 5.5).

• One of the first investigated applications of artificial bandwidth extension aimed at
the improvement of the quality of telephone contributions in broadcast programmes
Croll [54]. If telephone speech is interposed between passages of studio speech, it can
become distracting for the listener, because understanding the two different types of
speech requires different levels of concentration. By bandwidth extension, the quality
of the enhanced speech comes closer to that of studio speech. If the telephone contri-
bution is from a professional correspondent, pre-collected a priori knowledge about the
characteristics of the original voice can be made available to the extension algorithm.

• Artificial bandwidth extension can be applied to enhance the acoustical quality of
historical recordings of speech. In this application, no real-time processing is required,
and the parameters of the algorithm can be tuned manually. If additional wideband
recordings of the speaker are available, they can be used to determine the particular
voice characteristics.

6.2 FROM A SPEECH PRODUCTION MODEL
TO THE BANDWIDTH EXTENSION ALGORITHM

In principle, the physical reconstruction of the acoustic bandwidth of (speech) signals
can only be feasible if the algorithm has some a priori knowledge about the input signal.
For example, if we consider an arbitrary signal that is sampled with a sampling rate
of 8 kHz, and if there is no further information available on the kind of the signal, it
is impossible due to Nyquist’s theorem to tell anything about the signal components
beyond the limit frequency of 4 kHz. If, however, a mathematical model of the source of
the signal is available, the situation is fundamentally different: both the wideband signal
as well as the bandlimited signal are determined by parameters of the common source
model. Consequently, exact knowledge of these source parameters would open up the
possibility to reconstruct the complete wideband signal as it was originally produced. The
parameters of the source, on the other hand, can be estimated from the characteristics of
the bandlimited signal.

Because each mathematical model can only be a statistical approximation of the real
physical source of a signal, there are several potential drawbacks of such model-based
approaches: owing to simplifications introduced by the modelling, there will be estimation
errors both of the parameters of the source model as well as of the reconstructed wideband
signal. In addition, if the characteristics of the actual physical source do not match the
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characteristics of the source model exactly, that is, if there is a model mismatch, the
probability of estimation errors and artefacts in the enhanced signal further increases.

Another cause of estimation errors follows from the basic properties of the signal
source. In general, it is not possible to estimate the parameters of the source with arbitrary
accuracy because of the random attributes of the signal. In this regard, an upper bound
on the quality of the estimation of the spectral envelope of the speech signal will be
evaluated in Sec. 6.4.3.

The utilization of a particular model for the signal source also imposes fundamental
limits on the application areas of the bandwidth extension algorithm. If, for example, the
algorithm is based on a model of the process of speech production, the algorithm will
naturally not have the capability to extend general audio signals (such as music), or to
reconstruct characteristics of the acoustical environment of the speech signal, such as
reverberation or background noise.

6.2.1 MODEL OF THE PROCESS OF SPEECH PRODUCTION

For the process of speech production, there exists a well-known source-filter model, which
is illustrated in Fig. 6.4. This model has found wide acceptance in many applications of
speech signal processing, especially in the areas of speech coding and speech synthesis
(see, e.g. Flanagan [71], Rabiner and Schafer [217], Vary et al. [286]). According to the
physiology of the human vocal tract apparatus, the model can be sub-divided into two
parts: first, an excitation signal u(k) is produced, which resembles the excitation of the
vocal tract as produced by the vocal cords for voiced sounds, or by a constriction of the
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Figure 6.4 Time-discrete, linear source-filter model of the process of speech production.
To clarify the principle, exemplarily the power spectra of the excitation and output signal
of the model are shown for an idealized voiced speech sound. The spectral envelope
of the speech signal is shaped by the auto-regressive (AR) vocal tract filter H(z). The
magnitude transfer function of H(z) is illustrated by the dashed line in the right-hand
diagram
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vocal tract during unvoiced sounds or plosives. The excitation signal u(k) is the input
signal to a purely recursive, that is, auto-regressive (AR), digital filter H(z) that models
the resonance characteristics of the vocal tract.

All parameters, F0, V , σ , and a, of the model are basically highly time-variant. How-
ever, for speech signals, we can assume that the system is short-term stationary during
intervals with a duration of at least 10 to 30 ms. Therefore, in many speech-processing
algorithms, the speech signal is processed frame by frame with frame durations between
5 and 30 ms.

Excitation signal In the source-filter model, the excitation signal u(k) is produced by
several interacting sub-systems. For voiced sounds (e.g. vowels), a sequence of equidistant
impulses with the desired fundamental frequency F0 of the speech signal is produced by an
impulse generator. In the frequency domain, this impulse sequence corresponds to several
harmonics, which are positioned at the fundamental frequency F0 and integer multiples
thereof. All harmonics have the same constant amplitude. An example of the short-term
power spectrum of the excitation signal of a voiced sound is shown in the left diagram
in Fig. 6.4. For unvoiced sounds, the excitation signal is produced by a noise generator
that produces white noise with a variance of 1. Note that for both kinds of excitation, the
spectrum of the modelled excitation signal is flat. The selection of the particular kind of
excitation is performed by a binary switch that is controlled by the voicing parameter V .
Finally, the gain of the speech signal is specified with the common scalar gain factor σ .

This simple model of the generation of the excitation signal reflects the real physical
process speech production in a very idealized and simplified manner. For example, it
is very rare that speech sounds are exclusively of voiced or unvoiced nature. Normally,
the excitation signal is a mixture of both kinds of excitation. Further, the excitation of
the human vocal tract is not perfectly spectrally flat in reality: the periodic excitation
produced by the vocal cords in general has low-pass characteristics; for unvoiced sounds,
on the other hand, the spectral characteristics of the excitation signal depend on shape
and position of the constriction in the vocal tract that causes the chaotic turbulences of
the air. However, such model mismatches of the spectral characteristics of the excita-
tion signal can be taken into account by the subsequent filter H(z) in the source-filter
model. Although the model, in a sense, is too simple to describe the complex physical
mechanism of speech production, it has proven to be sufficient for most applications of
speech processing.

Vocal tract filter In the human vocal tract, the sound-specific spectral envelope of the
speech signal is shaped. Its signal-processing model consists of a time-variant auto-
regressive (AR) filter

H(z) = 1

A(z)
, with A(z) =

Na∑
i=0

ai z−i . (6.1)

The purely recursive structure of the filter H(z) can be motivated by physically modelling
the human vocal tract via an idealized, that is, lossless and discretized, acoustic tube
with varying diameter (e.g. Flanagan [71], Rabiner and Schafer [217], Vary et al. [286]).
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Because the human ear is basically insensitive to moderate variations of the signal phase,
the vocal tract can be modelled by a minimum-phase AR filter.

According to its role in the decoder of a linear predictive coding (LPC) system, the
filter modelling the vocal tract is frequently called LP synthesis filter in literature. The
filter coefficients are combined in the column vector a = [

a0, a1, . . . , aNa

]T
. The first

coefficient is normalized to a0 = 1 in general such that

1

2π

∫ π

−π

1

A(ej�)
d� = 1

2π

∫ π

−π

A(ej�) d� = 1. (6.2)

Owing to this normalization, the transfer function of the vocal tract filter is independent
of the short-term power (or gain) of the speech signal. Hence, it describes the shape of
the spectral envelope only. Because of the limited order Na of the AR filter, it describes
a smoothed version of the spectral envelope of the signal. Typical filter orders are Na =
8 . . . 10 for narrowband speech (sampling frequency fs = 8 kHz), and Na = 16 . . . 18 for
wideband speech (fs = 16 kHz).

Since the LP synthesis filter H(z) is a minimum-phase filter, there always exists a stable
inverse thereof. The inverse A(z) of the LP synthesis filter has a finite impulse response,
and it is often called LP analysis filter. The analysis filter has an important property for
the bandwidth extension application: if the filter coefficients a are available, that is, if the
shape of the spectral envelope of the speech signal is known, applying the LP analysis
filter to the speech signal will calculate an estimate of the excitation signal u(k).

The optimal filter coefficients (in the sense of minimizing the power of the estimated
excitation signal) for a given segment of speech can be determined by performing a
linear prediction analysis of the speech frame (see, e.g. Makhoul [166], Markel and Gray
[168], Vary et al. [286]). This procedure is commonly performed in two stages: for each
speech segment the first Na + 1 short-term auto-correlation coefficients are estimated,
which are then transformed into the filter coefficients a, for example, by the recursive
Levinson–Durbin algorithm (Roberts and Mullis [228]).

6.2.2 BANDWIDTH EXTENSION ALGORITHM

Most adaptive bandwidth extension algorithms for speech are based on the source-filter
model of the speech production process as described in the previous section. The estima-
tion of the missing signal components is performed in a two-stage procedure, indirectly
via the model of the source: in the first step the parameters of the wideband source model
are estimated from the bandlimited speech signal. These parameters are then used in
combination with the model itself to determine an estimate of the wideband speech. This
approach is in general well suited for the extension both to high frequencies and to low
frequencies.

Below, on the basis of the block diagram in Fig. 6.5, an overview of the principal
structure and properties of bandwidth extension algorithms for speech shall be given.
According to the structure of the source-filter model from Sec. 6.2.1, the bandwidth
extension is performed separately for the excitation signal and for the spectral envelope
of the speech signal (Cheng et al. [49], Carl [44], Iyengar et al., see Chapter 8). Since
these two constituents of the speech signal can be assumed to be mutually independent
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Figure 6.5 Signal flow of an algorithm for the bandwidth extension of speech signals
(Jax et al. [129]). The final synthesis filter H̃ (z) of the algorithm and certain parts of the
sub-system for the extension of the excitation signal reflect the source-filter model from
Sec. 6.2.1

to a certain extent, the separate optimization of the two parts of the algorithm leads to an
approximation of the global optimum.

The importances of the two sub-tasks are different. For the extension towards high
frequencies, the principal problem is posed by the estimation of the wideband spectral
envelope. This fact can be verified easily in listening experiments by applying the BWE
algorithm utilizing knowledge of the original wideband spectral envelope: by modifying
only the excitation signal in the extended frequency bands, the quality of the enhanced
speech signal is only slightly inferior to the quality of the original wideband speech (see
Sec. 6.3 or Carl [44]). Consequently, the sub-system for the estimation of the spectral
envelope has to be designed with special diligence.

For low-frequency BWE, an additional important problem is the correct reconstruction
of the pitch information. If the fundamental frequency and/or first overtones thereof are
recovered incorrectly, the base-band and extended components will not be grouped to a
single auditory stream, see Sec. 1.4.

A detailed description of the two parts of the algorithm concerned with the extension
of the excitation signal and of the spectral envelope can be found in Secs. 6.3 and 6.4 ff.
respectively.

Interpolation If the sampling rate of the input signal snb(k
′) of the BWE algorithm is

not sufficiently high to allow the representation of the extended speech signal, the first
step in the BWE system consists of increasing the sampling rate via interpolation (e.g.
Oetken and Schüßler [189], Crochiere and Rabiner [53]). In the example that is illustrated
in Fig. 6.5, the narrowband input signal is represented with the typical sampling rate (of
narrowband speech) of fs′ = 8 kHz. Hence, to allow the extension of high-frequency
components up to a cut-off frequency of 7 kHz, the sampling rate has to be increased to
fs = 16 kHz. Note that by the interpolation the signal contents are not modified – the
interpolated signal snb(k) is still bandlimited in the same manner as the input signal
snb(k

′).
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All of the subsequent modules are processed with the fixed sampling rate fs, for
example, fs = 16 kHz. Furthermore, the processing is mostly performed frame by frame
with a frame length of about 20 ms. In the sequel, the frame index is denoted by m.
Within each frame, the samples are indexed by the variable κ , with 0 ≤ κ ≤ Nκ − 1, and
Nκ being the number of samples per frame (i.e. Nκ = 320 if fs = 16 kHz).

Estimation of the AR coefficients The actual bandwidth extension starts with the esti-
mation of the coefficient set ã, representing the shape of the spectral envelope of the
wideband speech signal. For this purpose, as much relevant information as possible shall
be utilized from the available bandlimited speech. For each signal frame, a vector of
features x of the input speech is calculated, providing the basis for the estimation. A pre-
trained statistical model contributes the necessary a priori knowledge on the properties of
the process of speech production. A detailed description of the statistical modelling and
of different estimation procedures is given in the Secs. 6.4 to 6.9.

Analysis filter The estimated wideband filter coefficient set ã is utilized in an FIR
analysis filter Ã(z), which is applied to the interpolated bandlimited input signal snb(k):

Ã(z) =
Na∑
i=0

ãi z−i , and ũnb(k) =
Na∑
i=0

ãi snb(k − i). (6.3)

Because the analysis filter is the inverse of the corresponding auto-regressive vocal tract
filter, the output ũnb(k) of the analysis filter can be interpreted as an approximation of the
excitation of the speech. It must be kept in mind, however, that this estimate is bandlimited
in the same manner as the input signal of the BWE algorithm.

Extension of the excitation signal The next step in the BWE system consists of sub-
stituting the missing frequency components in the excitation signal. Depending on the
desired quality of the extended excitation signal, as well as on the admissible complexity
of this sub-system, the different parameters, σ , V , or F0, of the source model can be
considered to a greater or lesser extent for this purpose. Owing to the assumed spec-
tral flatness of the excitation signal, and because of the fact that the human ear is quite
insensitive to variations of the spectral fine structure at high frequencies, the extension
can be realized in a very efficient manner. Different approaches for the extension of the
excitation signal are described in Sec. 6.3.

In principle, an extension of low (e.g. below 300 Hz) as well as high components (above
3.4 kHz) of the excitation signal is obtainable. Therefore, the output signal ũwb(k) of this
block reflects the desired estimate of the wideband excitation signal.

During the extension of the excitation, it shall be guaranteed that the base-band com-
ponents of ũnb(k) are not modified – then, the input speech snb(k) will be contained
transparently in the output signal s̃wb(k) of the BWE system.

Synthesis filter So far, both an estimate ũwb(k) of the wideband excitation signal and an
approximation ã of the coefficient set of the AR filter representing the spectral envelope
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of the wideband speech signal have been determined. To finalize the estimate of the
wideband speech signal, the two quantities are combined by means of the synthesis filter

H̃ (z) =
(

Na∑
i=0

ãi z−i

)−1

= 1

Ã(z)
. (6.4)

Considering the normalization (ã0 = 1) of the AR coefficients, the output signal of the
bandwidth extension system is computed by

s̃wb(k) = ũwb(k)−
Na∑
i=1

ãi s̃wb(k − i). (6.5)

Note that the transfer function of the synthesis filter is inverse to the transfer function of
the employed analysis filter for each signal frame, because the identical coefficient set ã
is utilized in both filters.

6.2.3 ALTERNATIVE STRUCTURES

A characteristic property of the algorithm from Sec. 6.2.2 is the fact that both the analysis
filter and the synthesis filter are operated at the same sampling rate and, moreover, with
the identical coefficient set ã. The two filters are exactly mutually inverse. This feature
discriminates the algorithm from alternative approaches, which, in a similar manner,
perform a separate extension of the excitation signal and the spectral envelope (e.g. Carl
[44, 45], Avenando et al. [23], Nakatoh et al. [183], Enbom and Kleijn [64], Epps and
Holmes [66], Miet et al. [174], Park and Kim [200], Valin and Lefebvre [279], Fuemmeler
et al. [78]). In the latter algorithms, narrowband coefficients ã′nb for the analysis filter are
either determined via an LP analysis or taken from a codebook. For the synthesis filter,
on the other hand, a different wideband coefficient set ãwb is utilized, which is estimated
or taken from a different codebook (the so-called shadow-codebookcodebook,shadow-
codebook). In Fig. 6.6, an example of the structure of such an alternative BWE algorithm
is shown. Note that because with the structure from Fig. 6.6 the LP analysis and synthesis
filters are not exactly mutually inverse in the base-band, it is important to apply gain
correction of the extended speech components.

The two basic approaches from Figs. 6.5 and 6.6 have distinct properties that shall be
discussed in the following text.

Transparency in the base-band and mixing An important requirement on algorithms
for the bandwidth extension of speech signals is the transparency of the system with
respect to the bandlimited input signal. As the input signal provides the best possible
speech quality within its limited frequency range, it shall be contained unmodified in the
output of the BWE system.

If different coefficient sets (as, e.g., ã′nb and ãwb in Fig. 6.6) are used in the analysis
and synthesis filter, it is in general necessary, in order to ensure the transparency of the
algorithm with respect to the base-band, to mix the original input signal of the BWE
algorithm with the band-stop-filtered extended speech to calculate the output signal of
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ũwb (k)

s̃wb (k)

Synth. filter
(Awb (z))−1˜

LP
analysis

Band-stop
filter

Gain correct.

Figure 6.6 Signal flow of an alternative algorithm for bandwidth extension of speech
signals (e.g. Park and Kim [200], Fuemmeler et al. [78]). The block ‘extension of exci-
tation’ additionally performs an interpolation of the excitation signal

the BWE system (see Fig. 6.6). Owing to discrepancies in the transfer functions of the
analysis and synthesis filter, the base-band speech components are distorted in the lower
signal path of Fig. 6.6, and additionally certain artefacts are produced. Further, the relative
power of the extended speech is generally altered with this structure. Therefore, prior to
mixing the extended signal with the input speech, a correction factor has to be applied to
the extended signal (Carl [44], Park and Kim [200], Nilsson and Kleijn [187], Fuemmeler
et al. [78]). The proper correction factors have to be estimated in addition to the wideband
spectral envelope of the speech.

Such measures are not needed in the algorithm from Sec. 6.2.2 because synthesis and
analysis filters are mutually inverse: the transparency of the BWE system gets indepen-
dent of the extension of the spectral envelope. Provided that during the extension of the
excitation the narrowband components of the excitation signal are not modified, errors
in the estimated spectral envelope of the analysis filter (in the sense of an optimal LPC
prediction filtering) are completely compensated by the inverse synthesis filter within the
base-band. The power of the signal is not modified because of the filtering. However,
to achieve transparency of the complete BWE system, the sub-system that is responsible
for the extension of the excitation is now required to be transparent with respect to the
base-band components (cf. Sec. 6.3).

Impact of estimation errors of the spectral envelope If the estimated coefficient set ã,
representing the spectral envelope of the wideband speech, is inaccurate, the impact on the
quality of the extended frequency bands of the output signal may be two-fold. It is quite
obvious that errors of the frequency response of the synthesis filter within the extended
frequency bands directly effect the quality of the extended bands: the estimated excitation
signal will be shaped by the synthesis filter according to the erroneous spectral envelope.

In the algorithm from Sec. 6.2.2, errors within the base-band of the frequency response
of the analysis filter can further impair the quality of the extended bands in an indirect
manner. Owing to errors of ã, the estimate ũnb(k) of the bandlimited excitation signal,
that is determined by the erroneous analysis filter, is not spectrally flat as assumed in



184 Audio Bandwidth Extension

the source-filter model. During the subsequent extension of the excitation signal, these
errors within ũnb(k) will propagate into the extended frequency bands of the estimated
wideband excitation ũwb(k). Thus, although base-band transparency is guaranteed by the
algorithm, errors in the base-band of the estimated spectral envelope do, nevertheless,
effect the extended speech signal s̃wb(k). If, for example, the extension of the excitation
is performed by spectral translation or folding (see Sec. 6.3.3), the errors of the estimated
spectral envelope within the base-band and within the extended band are effectively added
up. In Sec. 6.4.1.1, a method that prevents errors in the base-band of the estimated spectral
envelope will be described.

Algorithmic delay In real-time speech communication, it is generally desired to keep
the signal delay as low as possible. Nevertheless, it is important to apply proper delay
compensation in any parallel signal path of a BWE system to ensure that the extended
frequency components are psychoacoustically grouped together with the base-band speech
(cf. Sec. 1.4).

There are several potential sources of algorithmic delay in the bandwidth extension
systems of Figs. 6.5 and 6.6. Firstly, there is always an algorithmic delay due to the
frame-based processing of the algorithm: all Nκ samples have to be available before the
processing of a frame can start. If the bandwidth extension algorithm is positioned behind
a speech decoder, however, in general this source of delay is not relevant since most
speech codecs also operate on a per-frame basis. The bandwidth extension system can be
merged with the speech decoder.

If the input signal of the BWE algorithm has to be interpolated before applying the
analysis filter, an additional delay will be caused by the interpolation low-pass filter. The
design criteria of transition bandwidth and stopband attenuation for this filter, however,
are not as stringent as for an isolated interpolation system. The high-frequency part of the
speech signal will be approximated anyhow by the BWE system. Aliasing errors from non-
optimal interpolation may be masked by subsequently added extended frequency compo-
nents. Consequently, the order and delay of the interpolation filter can be kept rather low.

A further delay of the speech signal might be introduced if any filters are utilized in
the sub-system for the extension of the excitation signal to guarantee the base-band trans-
parency of that sub-system (compare Sec. 6.3). Note that in this case also the adjustment
of the synthesis filter coefficient set ã has to be delayed accordingly. The processing of
the speech signal by the analysis and synthesis filters does not produce any delay of the
signal (although both filters are causal) because the two filters are both minimum-phase
filters and mutually inverse.

Finally, a delay of the speech signal is necessary if a look-ahead shall be utilized in the
estimation of the wideband spectral envelope (compare Sec. 6.9). In this case, the input
signal snb(k) of the analysis filter has to be delayed in accordance with the implicit delay
of the estimated AR coefficients ã.

6.3 EXTENSION OF THE EXCITATION SIGNAL

In this section, the sub-system of the BWE algorithm that is responsible for the extension
of the excitation signal of the speech (compare Fig. 6.5) is treated. This sub-system gets
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the bandlimited estimate ũnb(k) of the excitation as its input. The output signal ũwb(k)

on the other hand serves as the input to the final synthesis filter of the BWE system and
reflects an estimate of the wideband excitation signal. The task of the extension of the
excitation signal is the recovery of the spectral fine structure of the speech signal.

Potential algorithms that can be employed for the extension of the excitation signal
benefit both from the quite simple structure of the excitation signal according to the source-
filter model of speech production (compare Sec. 6.2.1) as well as from insensitivities of
the human auditory system with regard to certain distortions of the spectral fine structure
at high respectively low frequencies. In this chapter, several algorithms from literature are
described and evaluated. The different methods for the extension of the excitation either
reuse the signal components of the estimated bandlimited excitation signal ũnb(k), for
example, by spectral translation (Sec. 6.3.3) or pitch scaling (Sec. 6.3.4), or they generate
new components via explicit signal generation (Sec. 6.3.1) or by non-linear distortion
(Sec. 6.3.2).

An important requirement that has to be demanded for the estimated wideband exci-
tation signal ũwb(k) is that it transparently contains the estimated bandlimited excitation
signal ũnb(k) – in this case, the complete BWE system becomes transparent with respect
to the narrowband input speech (see Sec. 6.2.3). To guarantee this transparency, it is
necessary for some of the following methods to mix the original bandlimited excita-
tion ũnb(k) with an appropriately high-pass respectively low-pass-filtered version of the
extended excitation.

Because the vast majority of publications on the topic of bandwidth extension of speech
signals to date is concerned primarily with the extension of the spectral envelope of the
speech, most of the known methods for the extension of the excitation signal have been
adopted from the field of speech coding. Especially, techniques from so-called base-band
codecs are used. In these speech codecs, only a part of the frequency components of
the LPC residual signal is coded and transmitted while the remaining components are
recovered at the receiving site via high-frequency regeneration (HFR, e.g. Makhoul and
Berouti [167], Kroon et al. [150], Taori et al. [265], McCree et al. [171]). A prominent
representative of this category of speech codecs is the GSM full-rate codec [69], Vary
et al. [285].

6.3.1 EXPLICIT SIGNAL GENERATION

The most straightforward solution to extend the excitation signal consists of the explicit
generation of the missing signal components. Basically, by this approach the excitation
part of the source model from Sec. 6.2.1 is implemented directly. The method there-
fore strongly depends on estimates of the source parameters, that is, on estimates of the
voiced/unvoiced state V , the gain factor σ , and the fundamental frequency F0 of the
speech (compare Fig. 6.7).

According to the admissible computational complexity and to the desired accuracy of
the simulated source model, there are several prevalent approaches:

• Noise only : The missing components of the excitation signal are produced by a noise
generator and a subsequent band-stop filter. Further, the gain σ̃ of the noise signal
ũmb(k) has to be adapted to match the gain of the base-band excitation signal ũnb(k).
The procedure is reflected by the block diagram of Fig. 6.7 if the voiced/unvoiced
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ũmb (k)
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Figure 6.7 Extension of the excitation signal via explicit signal generation

switch (parameter Ṽ ) is invariably set to the upper (unvoiced) position. This approach
can be motivated by the fact that the main contribution of high-frequency components
of the speech is during unvoiced sounds.
In fact, the addition of noise components yields very good results if the extended
frequency band is rather narrow. For example, this approach has been used successfully
in several wideband speech codecs for the coding of the frequency components above 6
or 6.4 kHz and up to 7 kHz, for example, Paulus [206], Schnitzler [238], Erdmann et al.
[67], 3GPP TS 26.190 [3]. Regarding the quite wide missing frequency band above
3.4 kHz in the artificial bandwidth extension of narrowband telephone speech, however,
both the extended excitation signal as well as the extended speech signal (after the AR
synthesis filter) sound quite noisy. Especially during voiced speech segments, the noisy
signal components added at high frequencies are then well audible and annoying.

• Noise and/or sinusoids: The algorithm can be refined by distinguishing between voiced
and unvoiced segments of the speech. During unvoiced phases a noise generator is uti-
lized, and during voiced sounds a tonal excitation is produced in the missing frequency
band. The techniques for sine-wave generation resemble those from sinusoidal or har-
monic coding (Griffin and Lim [100], Carl [44], McAulay and Quatieri [170]). The
voiced/unvoiced switching can either be ‘hard’, allowing either a noisy or a tonal
extended excitation ũmb(k) at a time, or the kind of excitation is specified individ-
ually for different frequency bands. In the latter case, the approach corresponds to
the harmonic plus noise model (HNM) from Griffin and Lim [100], Abrantes et al.
[13], Stylianou [258]. In the bandwidth extension system, the newly generated signal
components ũmb(k) are mixed with the original bandlimited excitation ũnb(k).
In informal listening experiments, it can be found that a very good estimation of
the fundamental speech frequency F0 is crucial for the generation of tonal speech
components: if the estimate F̃0 is inaccurate, the objectionable impression is produced
that an interfering simultaneous speaker with a slightly different pitch frequency is
added to the speech signal. This problem can be circumvented if the excitation signal
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is substituted completely, that is, if also the base-band components are regenerated
(Chan and Hui [47, 48]). This, however, may also introduce artefacts in the base-band
frequency range of s̃wb(k).

6.3.2 NON-LINEAR PROCESSING

The first approach to the artificial bandwidth extension of speech signals to our knowledge
was the application of non-linear distortions to the narrowband speech snb(k) as proposed
by Schmidt [236]. The same basic method can also be used to extend the excitation signal
of the speech: an estimate of the wideband excitation signal is determined by applying a
non-linear function g(·) to the bandlimited excitation ũnb(k)

ũnl(k) = g (ũnb(k)) . (6.6)

Owing to the non-linear processing, (harmonic) distortions that reflect the desired new
signal components in the missing frequency bands are created. The signal ũnl(k) denotes
a generalized extended excitation signal here, that is, it can correspond to the high- or
low-frequency band of the speech signal, respectively.

There is an unlimited number of possible non-linear functions g(·), and it is quite
difficult to find that particular function that yields the best results in the bandwidth exten-
sion application. Non-linear functions have been used in bandwidth extension algorithms
mainly for the generation of low-frequency speech components to date (Schmidt [236],
Croll [54], Patrick et al. [201], Valin and Lefebvre [279], Kornagel [147]). The utilized
non-linearities g(·) have been, for example, quadratic, cubic, or saturation functions, and
half-wave respectively full-wave rectification. Note that here in contrast to Chapters 2
and 3 the non-linearities are applied to a signal containing more than only one harmonic.
Unfortunately, the effects of the non-linear function g(·) are very difficult to predict, as any
modification of the input signal ũnb(k) (e.g. scaling, the addition of signal components,
application of phase distortions, or a simple addition of a constant value) can significantly
effect the properties of the distorted signal ũnl(k). In general, either the narrowband signal
ũnb(k) has to be pre-processed (normalized) prior to applying the non-linearity, or the
distorted signal ũnl(k) has to be post-processed.

The possibility of a post-processing of the distorted signal is illustrated in Fig. 6.8. The
shape of the envelope as well as the gain of the distorted signal ũnl(k) are corrected (and
adapted to the base-band excitation) to match the assumption of a spectrally flat wideband
excitation signal from the source-filter model of Sec. 6.2.1: first, an LP analysis of the
signal is performed. The corresponding adaptive LP analysis filter is applied, yielding
a whitening of the signal. Afterwards, the gain of the signal is adjusted to match the
gain of the base-band excitation ũnb(k). As the non-linear distortion effects the whole
frequency range of the distorted signal, measures have to be taken to guarantee base-band
transparency. The base-band components have to be removed from ũeb(k) by band-stop
filtering, or by high-pass respectively low-pass filtering if only an extension towards
high respectively low frequencies is desired. The filtered signal ũmb(k) is mixed with
the narrowband excitation signal to determine the estimated wideband excitation signal
ũwb(k).

In experiments, very good results were achieved with a simple quadratic non-linear
distortion, that is, with the function ũnl(k) = (ũnb(k))2. By this non-linearity, both
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Figure 6.8 Extension of the excitation signal by non-linear distortion. To compensate
for hardly controllable adverse effects of the non-linearity, sophisticated post-processing
is required. The algorithmic delay of the band-stop filter has to be compensated for in the
path of the base-band signal

low-frequency and high-frequency components can be generated. The upper cut-off fre-
quency of the distorted signal ũnl(k) is twice the upper band limit of the narrowband
excitation ũnb(k). Since only harmonic distortions are produced by the squaring oper-
ation, the tonal components in the enhanced excitation signal ũwb(k) always match the
harmonic structure of the bandlimited excitation ũnb(k) during voiced sounds.

For low-frequency bandwidth extension, simple full-wave rectification has proven suc-
cessful. It has the advantage that the signal level is not altered (a full-wave rectifier is a
homogeneous system, see Sec. 1.1.1) such that it can easily be implemented.

6.3.3 MODULATION IN THE TIME DOMAIN

In this section, we consider algorithms that are based on a modulation of the band-
limited excitation signal ũnb(k) (Carl [44], Fuemmeler et al. [77], Kornagel [147], Jax
and Vary [130]). Because a modulation in the time domain corresponds to a translation in
the frequency domain, the input signal is virtually reused by ‘shifting’ it into the missing
frequency band(s). Several well-known methods for the extension of the excitation signal,
such as spectral folding or spectral translation, are special cases of the more general
modulation concept (Carl [44]).

The straightforward implementation of a spectral translation would be based on the
analytical signal of the bandlimited excitation. The product of the analytic signal with a
complex-valued modulation function directly yields the desired extended signal. However,
the determination of the analytic signal by Hilbert transformation either in the time- or
frequency domain is quite complex (e.g. Schuessler [242], Marple [169]). In general,
equivalent results as with the analytic signal can also be achieved by modulation of the
input signal with a real-valued modulation function. However, in this case the shifted
spectra cause mutual overlappings that have to be removed by subsequent frequency-
selective filtering as illustrated in Fig. 6.9.

In the following, the modulation shall be performed using a real-valued cosine function:

ũM(k) = ũnb(k) · ζ cos(�M k). (6.7)
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ũnb (k) ũwb (k)

ũM (k) ũmb (k)

z cos (ΩMk)

Low-/high-
pass filter

Delay com-
pensation

Figure 6.9 Extension of the excitation signal by modulation. The algorithmic delay of
the high-pass filter has to be compensated for in the path of the base-band signal ũnb(k)

Depending on the particular modulation frequency �M, the fixed scalar factor ζ in
Eqn. 6.7 has to be chosen from ζ ∈ {1, 2} to obtain the correct power of the extended
excitation signal. The argument of the cosine function consists of the phase function �M k,
which is linear in time if the modulation frequency �M is fixed. By the multiplication of
the input signal with the cosine signal in time domain, two shifted copies of the original
spectrum Ũnb(e

j�) are generated

ŨM(ej�) = ζ

2
(Ũnb(e

j (�−�M))+ Ũnb(e
j (�+�M))). (6.8)

The two shifted spectra may overlap in different frequency ranges. Whether such overlap-
pings occur, and to which extent, depends on the lower- and upper-frequency limits �bb,l
and �bb,u of the bandlimited speech signal as well as on the modulation frequency �M.

The modulation approach to the extension of the excitation signal is especially suited
for the extension of high frequencies, because the frequency range to be extended above
the upper band limit �bb,u of the input speech is – in contrast to the lower extended
frequency range – in general larger than the bandwidth of the base-band. This property
has consequences for the design criteria of the high-pass respectively low-pass filter from
Fig. 6.9: if the bandwidth of the shifted spectrum is greater than the width of the extended
frequency range, the implemented filter shall have very steep slopes.

Owing to the importance of the fundamental frequency of the speech in the low-
frequency excitation, only a pitch-adaptive approach is applicable to the extension of the
missing low-frequency band.

6.3.3.1 Spectral Folding

The method of spectral folding reflects a special case of the modulation method that
is exclusively suitable for the extension of high-frequency components. The modulation
frequency is specified to be equal to the Nyquist frequency �M = π (corresponding
to fM = 8 kHz for the (interpolated) excitation signal ũnb(k)). Thereby, the modulation
function is simplified to a sequence of alternating signs cos(�M k) = (−1)k . The two
shifted spectra are superimposed constructively such that ζ = 1. By the modulation, a
‘folded’ version of the input signal is generated, the spectrum of which is mirrored at
� = π/2, that is, the half of the Nyquist frequency.
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Because the folded spectrum is bandlimited in the same way as the spectrum of the
input signal, the high-pass filter from Fig. 6.9 can be omitted. The combination of the
folded signal with the input signal yields the most efficient method for an extension of
the excitation signal towards high frequencies:

ũwb(k) = ũnb(k)+ ũnb(k) cos(�M k)

= ũnb(k) (1+ (−1)k). (6.9)

The base-band of the input signal is preserved transparently if the upper band limit of the
base-band speech is �bb,u < π/2. Because of its efficiency, the method of spectral folding
is used very frequently in bandwidth extension algorithms. Similar approaches can also
be found in base-band speech codecs such as the GSM full-rate speech codec [69].

By the use of the spectral folding method, some systematic errors are produced, as
can be observed in Fig. 6.10 (a). Since the fundamental frequency of the speech is not
considered, the reproduced discrete structure in the extended frequency band is inconsis-
tent during voiced sounds – the discrete frequency components are not correctly placed at
integer multiples of the fundamental frequency, resulting in a metallic sound or ‘ringing’
of the enhanced speech s̃wb(k). Further, the position of the extended frequency band is
invariably determined by the sampling rate and the band limits of the input signal. In
general, a spectral gap is created in the frequency range �bb,u < � < π−�bb,u. For typ-
ical telephone speech (300 Hz to 3.4 kHz), for example, there will be a large gap between
3.4 and 4.6 kHz. In addition, the upper band limit of the folded signal is determined by
the lower band limit of the input speech. For telephone speech, the upper limit of the
extended speech is at 7.7 kHz. Serious artefacts are produced if there is a DC component
in the input signal: the folded DC component yields a strong stationary sinusoid at the
Nyquist frequency.

6.3.3.2 Spectral Translation

In this section, the modulation shall be performed with a fixed modulation frequency as
well. Now, the modulation frequency �M is specified by the bandwidth of the bandlimited
input speech (lower band limit �bb,l and upper band limit �bb,u)

�M = �bb,u −�bb,l. (6.10)

Owing to this setting of �M the spectrum Ũnb(ej (�−�M)), shifted towards high frequencies
(see Eqn. 6.8), starts in continuation of the base-band spectrum Ũnb(e

j�), that is, there
is no gap in the spectrum of the extended speech. The upper band limit of the extended
speech depends on the band limits of the base-band signal. It is defined by the frequency
�bb,u +�M = 2 �bb,u −�bb,l (corresponding to 6.5 kHz for telephone speech).

Prior to the mixing of the extended excitation with the base-band excitation signal, the
frequency range in which the downwardly shifted spectrum is situated shall be removed
by high-pass filtering (see Fig. 6.9). The cut-off frequency of the employed high-pass
filter shall be equal to the upper band limit �bb,u of the base-band which is, due to the
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(a) Spectral folding (Sec. 6.3.3.1)

(b) Fixed modulation frequency of ΩM = 3.1 kHz · 2p/ fs (Sec. 6.3.3.2)

(c) Pitch-adaptive modulation and low-pass filtering at 7 kHz (Sec. 6.3.3.3)

Figure 6.10 Spectrograms of the excitation signal ũwb(k), extended via modulation-
based techniques. Black regions reflect a large short-term power spectrum. The sentence
‘to administer medicine to animals’ is spoken by a female voice. Note that there is a pitch
estimation error in the pitch-adaptive approach (c) after about 1.5 s

particular choice of the modulation frequency, also the lower limit of the spectrum shifted
towards high frequencies. The desired stopband attenuation of the filter shall be obtained
for frequencies below max

(
�bb,l,�bb,u − 2 �bb,l

)
, for example, below 2.8 kHz if typical

telephone speech is the input of the BWE system.
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6.3.3.3 Pitch-adaptive Modulation

The modulation schemes with fixed modulation frequencies that have been described so
far share the disadvantage that the discrete spectral structure of the extended excitation
signal ũwb(k) during voiced sounds is inconsistent. To achieve a better performance, a
further possibility to control the modulation frequency �M that takes the pitch frequency
�p of the current speech frame into account shall be studied. The method has been
developed independently by Fuemmeler and Hardie [77], Kornagel [147], and Jax and
Vary [130], all in 2001. The idea to utilize information on the fundamental frequency of
the speech for the extension of an excitation signal was first proposed by Makhoul and
Berouti [167].

The basis of the pitch-adaptive modulation (PAM) in the time domain is an estimate
�̃p = 2π F̃0/fs of the fundamental frequency in the currently processed frame of the
speech signal (e.g. Hess [109]). The modulation frequency �M is then adjusted in depen-
dence of the estimate �̃p, such that the shifted tonal components of the base-band exci-
tation correspond to proper harmonics of the fundamental frequency within the extended
frequency band

�M = nM �̃p with nM ∈ N
+ and �M,l ≤ �M ≤ �M,u. (6.11)

In this way, for example, the qth harmonic of the fundamental frequency of the speech
is shifted to the position of the (q + nM)th harmonic. The integer-valued factor nM is
an adjustable parameter that has to be specified for each signal frame depending on the
estimated fundamental frequency such that the resulting modulation frequency is between
�M,l and �M,u. By the limitation of the range of values of �M, it shall be prevented that
the bandwidth of the extended speech signal fluctuates strongly because of the variations
of the fundamental frequency of the speech. The adaptive calculation of nM(m) can, for
example, be performed by the following method

nM(m) =




⌈
�M,l

�̃p(m)

⌉
, if nM(m− 1) �̃p(m) < �M,l

nM(m− 1), if �M,l ≤ nM(m− 1) �̃p(m) ≤ �M,u⌊
�M,u

�̃p(m)

⌋
, if nM(m− 1) �̃p(m) > �M,u.

(6.12)

The basic principle of Eqn. 6.12 is to keep the factor nM(m − 1) that has been used in
the preceding frame, if possible, thereby minimizing the number of switchings. If the
reuse of the factor nM(m) would lead to an under- or overshooting of the minimum or
maximum modulation frequencies �M,l and �M,u, respectively, the value of nM(m) is
corrected such that the new modulation frequency is just within the admissible range. The
described procedure to control nM(m) implies that the difference �M,u −�M,l is greater
than the maximum possible fundamental speech frequency such that there exists a valid
factor nM, fulfilling the requirements from Eqn. 6.11, for each potential estimate �̃p.

If the input signal of the bandwidth extension system has the typical telephone band-
width (300 Hz to 3.4 kHz), the minimum modulation frequency should be specified by
the bandwidth of the input speech �M,l = 3.1 kHz · 2π/fs. The upper limit �M,u of the
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modulation frequency can, for example, be adjusted to �M,u = 4.6 kHz · 2π/fs such that
the maximum upper band limit of the extended speech is about 7 kHz. In the example
of Fig. 6.10 (c), the maximum modulation frequency is set to �M,u = 3.6 kHz · 2π/fs,
and the variations of the upper band limit of the extended excitation signal ũwb(k) are
suppressed by low-pass filtering the modulated signal ũM(k) with a cut-off frequency
of 7 kHz.

Since an absolutely accurate estimate of the fundamental frequency of the speech cannot
by expected from any realizable pitch estimation algorithm, we have evaluated the impacts
of typical estimation errors on the performance of the pitch-adaptive modulation method.
A quite typical error of pitch estimation algorithms is pitch doubling, that is, �̃p = 2 �p.
Pitch-doubling errors, however, do not have any effect on the results of the pitch-adaptive
modulation approach because the resulting modulation frequency �M is again an integer
multiple of the true fundamental frequency �p. In the case of relatively small deviations
of the estimated pitch frequency �̃p, on the other hand, the PAM algorithm exhibits a quite
strong susceptibility because any such error is significantly increased by the multiplication
with the large factor nM. Consequently, a very accurate pitch estimation algorithm is
needed for the estimation of �̃p. Otherwise, the positions of discrete tonal components
in the extended frequency bands will be inconsistent, and the performances of the PAM
algorithm and the fixed spectral translation (Sec. 6.3.3.2) will be to a certain extent alike.
If, on the other hand, a sufficiently accurate pitch estimation algorithm is used with the
pitch-adaptive modulation approach, the resulting speech signal s̃wb(k) will sound more
natural in comparison. The artefacts (metallic sound, ‘ringing’) that are produced by
mis-aligned harmonics are reduced noticeably.

6.3.4 PITCH SCALING

Finally, a new method for the extension of the excitation signal towards high frequen-
cies that is based on frequency scaling of the original bandlimited speech signal shall
be described. Figure 6.11 illustrates the concept of the approach by a block diagram.
The application of the method for an exemplary speech signal is shown in the spec-
trograms in Fig. 6.12: first, by doubling the pitch frequency (pitch doubling), a version
ũeb(k) of the excitation signal is produced, which has a doubled upper band limit in
comparison to the bandlimited excitation signal ũnb(k). Comparing the spectrograms of
the narrowband excitation ũnb(k) from Fig. 6.12 (a) and of the signal ũeb(k) after pitch

Down-
sampling

Pitch doubling

Time
stretching

High-pass
filter

Delay com-
pensation

ũnb (k)

ũeb (k)

ũwb (k)

Figure 6.11 Extension of the excitation signal via pitch scaling. The pitch doubling is
realized by a downsampling by a factor of 2 and subsequent time stretching
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(a) Estimated narrowband excitation signal unb (k)

(b) Signal ueb (k) after pitch doubling

(c) Estimated wideband excitation uwb (k)˜

˜

Figure 6.12 Spectrograms of intermediate signals for the pitch-scaling approach to the
extension of the excitation signal. Black regions reflect a large short-term power spectrum.
The sentence ‘to administer medicine to animals’ is spoken by a female voice

doubling in Fig. 6.12 (b), it can be observed that the latter signal has frequency compo-
nents up to a cut-off frequency of about 6.8 kHz. During voiced sounds, the signal ũeb(k)

contains tonal components only at even integer multiples of the fundamental frequency
of the bandlimited excitation ũnb(k) from Fig. 6.12 (a).

The pitch doubling can, for example, be performed as depicted in Fig. 6.11: first,
the sampling rate of the narrowband excitation ũnb(k) is reduced by a factor of 21,

1
In the design of the downsampling method, an advantage can be taken here from the fact that the bandlimited

excitation signal ũnb(k) already has an upper band limit that is lower than half of the Nyquist frequency. Therefore,
a downsampling by a factor of 2 can simply be performed by omitting every other sample of the signal ũnb(k).
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thereby effectively halving the length of signal segments (as expressed in a number of
samples) In the second step, the downsampled signal is elongated conversely by employing
time-scaling techniques (e.g. Verhelst and Roelands [289], Moulines and Verhelst [181],
Verhelst [288]), that is, retaining the pitch frequency of the downsampled excitation
signal. Since the impacts of the downsampling and time-scaling operations on the length
of the speech segments as measured in samples per frame compensate each other, the
serial concatenation of the two operations yields a doubling of the pitch of the signal
components in ũnb(k).

After pitch doubling, the signal ũeb(k) is high-pass filtered and added to the properly
delayed bandlimited excitation signal ũnb(k), thus yielding the estimated wideband excita-
tion signal ũwb(k). It can be seen in Fig. 6.12 (c) that in those speech phases in which the
bandlimited speech represents a harmonic complex tone, the pitch-scaling approach has
the advantage that tonal signal components in the extended frequency band are at integer
multiples of the fundamental frequency of the speech. Accordingly, there are no metallic
or ringing artefacts in the enhanced speech. Note, however, that only harmonics with an
even order are present in the extended band (above 3.4 kHz) due to the pitch doubling.

The method in general succeeds in regenerating the proper harmonic structure in the
estimated wideband excitation signal. In some cases, particularly for speakers with a
very low pitch frequency, the impression is produced by the algorithm that a second
simultaneous speaker is present in the background of the enhanced speech who speaks
with a doubled pitch in comparison to the original speaker. A particular advantage of this
algorithm is the fact that it does not need any explicit estimate of any parameter, F0, V ,
or σ , of the excitation part of the source model from Sec. 6.2.1. Accordingly, the method
has a very high robustness.

6.3.5 DISCUSSION

To evaluate the performances of the different methods for the extension of the excitation
signal, extensive informal listening tests have been performed. To produce the speech
samples for these tests, the set-up from Fig. 6.13 was used. The block diagram resem-
bles our bandwidth extension system from Sec. 6.2.2, except that the estimation of the
wideband spectral envelope from the upper signal path of Fig. 6.5 is replaced by an LP
analysis of the original wideband speech. Thus, the AR coefficients awb can be assumed

snb (k)

swb (k)

unb (k) uwb (k)

awb

˜
˜

swb (k)
Telephone
band-pass

Delay com-
pensation

LP
analysis

Analysis
filter

Extension of
excitation

Synthesis
filter

Figure 6.13 System for the generation of speech samples for evaluating the quality of
different approaches for the extension of the excitation signal via informal listening tests
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to be optimal (in the sense of estimating the narrowband excitation signal unb(k)), and
potential artefacts in s̃wb(k) are solely due to the extension of the excitation signal.

We have performed many informal listening tests that have shown that – on the pre-
condition that the bandwidth extension of the spectral envelope works well – the human
ear is amazingly insensitive to distortions of the excitation signal at high frequencies above
3.4 kHz. For example, spectral gaps of moderate width as produced by band-stop filters
are almost inaudible. Further, inconsistencies of the harmonic structure of speech at high
frequencies do not significantly degrade the subjective quality of the enhanced speech
signal. The above comments particularly apply if the extended speech signal is played
back via the physically constrained acoustical front-end of, for example, a mobile handset.
As any such front-end in general has low-pass characteristics, the audibility of artefacts
in the spectral fine structure of the enhanced speech s̃wb(k) is reduced even further.

Owing to the beneficial properties of the human auditory system at high frequencies,
all of the described methods for the extension of the excitation signal towards high
frequencies perform well or very well if a good estimate of the wideband spectral envelope
is available. A reasonable compromise between the maximization of the subjective quality
of the output signal and the computational complexity is given by the modulation with
the fixed modulation frequency of �M = �bb,u −�bb,l.

The extension of the excitation signal towards low frequencies, on the other hand, is
more difficult. The low-frequency components (e.g. below 300 Hz) are especially dom-
inant during voiced sounds, and the human ear is rather sensitive to variations of the
harmonic structure in this frequency range. Because most of the methods that are capable
of extending the excitation towards low frequencies are based on a pitch estimation algo-
rithm (with limited accuracy), the regenerated low-frequency harmonics often do not fit
the harmonics within the base-band of the speech. This produces the distracting impression
that a second simultaneous speaker is contained in the enhanced speech signal.

Nevertheless, the subjective quality of the speech signals generated by the system from
Fig. 6.13, that is, with knowledge of the true spectral envelope of the wideband speech, is
reasonably well, particularly for the extension towards high frequencies. This observation
conforms to the results of previous investigations, where it was found that the quality of
the estimated wideband spectral envelope is far more important for the subjective quality
of the bandwidth-extended speech signal than the extension of the excitation signal (Carl
[44]). This has also been recognized in high-frequency BWE for audio applications, see
Sec. 5.5.

6.4 ESTIMATION OF THE WIDEBAND SPECTRAL ENVELOPE

The essential step in bandwidth extension algorithms is the estimation of the spectral
envelope of the wideband speech signal. This task corresponds to the upper signal path
in the block-diagram Fig. 6.5 of the bandwidth extension algorithm.

In most adaptive bandwidth extension algorithms, statistical estimation methods are
used, which are to a certain extent similar to approaches from pattern recognition or
speech recognition (see e.g. Fukunaga [79], Rabiner and Juang [216]). The estimation of
the spectral envelope is in general performed in several consecutive steps as illustrated in
Fig. 6.14. The three steps are executed for each frame of the speech signal and for each
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snb (k) x ỹ
Feature

extraction

a priori
knowledge

Classification
or estimation

Figure 6.14 Intermediate steps in the estimation of the representation ỹ of the wideband
spectral envelope

missing frequency band. Note that the frame index m will be omitted in the following
sections if it is not essential for the understanding of the particular topic.

Feature extraction From each signal frame of the narrowband input speech snb(k),
several features x are extracted, which carry information on the state of the source model,
that is, indirectly on the estimated spectral envelope of the missing frequency band.
By the feature extraction algorithm, the dimension and complexity of the estimation
problem are reduced significantly. The art is to find a compact set of features, that is, the
dimension dim x of the feature vectors x shall be low although the features shall carry
much information to allow a proper estimation of y. A more detailed description of the
feature extraction step will be given in Sec. 6.5.

A priori knowledge The extracted features x are compared with a priori knowledge,
comprising information on the joint behaviour of the features x and the unknown quantity
y. Several representations are possible such as linked codebooks (tables), transformation
matrices, reflecting linear correlation, or statistical models, for example, of the joint PDF
p(x, y). The utilized representation of the a priori knowledge is strongly linked with the
employed estimation method.

In general, the a priori knowledge has to be acquired during an off-line training phase
before applying bandwidth extension. For this, a larger amount of wideband speech data
is utilized. The model parameters will be stored for later use in the application phase of
the BWE system.

Classification or estimation The final step is the estimation of the representation y of
the spectral envelope. This step can be based on different classification or estimation
concepts, the most prominent of which are codebook mapping, linear or piecewise-linear
mapping, and Bayesian estimation, according to the possible representations of the a priori
knowledge as listed above. These approaches will be described together with the employed
a priori knowledge in Secs. 6.6 to 6.9. In literature, sporadically also other approaches
may be found such as, for example, neural networks (Tanaka and Hatazoe [262], Uncini
et al. [277], Iser and Schmidt [119]). In some papers, fixed spectral envelopes are used
(Larsen et al. [157]).

Note that commonly the required AR coefficients ã of the wideband linear predic-
tion filters are not estimated directly but some other mathematical representation of the
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spectral envelope is determined first. To keep our presentation abstract, we will denote
the estimator output by the quantity ỹ in the sequel, assuming that ỹ can directly be
converted into the coefficient vector ã to be applied in the analysis and synthesis filters
from Fig. 6.5. Common representations will be described in Sec. 6.4.1.

To make things even more complicated, ỹ may also stand for the shape and relative
gain of the spectral envelope within a particular missing sub-band only. In this case,
the wideband spectral envelope coefficients ã have to be computed by evaluating ỹ in
addition to the available narrowband speech signal snb(k). This approach will be discussed
in Sec. 6.4.1.1.

6.4.1 REPRESENTATIONS OF THE ESTIMATED SPECTRAL ENVELOPE

It is an open question, what is the best representation y of the wideband spectral envelope
to be estimated by the framework from Fig. 6.14. The spectral envelope can be represented
in many different forms. From an algorithmic view, the most natural representation would
be to directly use the AR coefficients a (i.e. ỹ = ã). In fact, this representation can be used
if the estimation algorithm performs a hard classification, for example, by the codebook
mapping approach (Carl [44], Carl and Heute [45], Yoshida and Abe [301]). Using just
slightly more sophisticated estimation methods, for example, by averaging over the most
likely codebook entries, there will be the problem that the stability of the LP synthesis
filter 1/A(z) cannot be guaranteed. Therefore, direct estimation of AR coefficients is not
often used for bandwidth extension.

The most frequently used representations of the spectral envelope in bandwidth exten-
sion of speech are line spectral frequencies (LSF), for example, in Enbom and Kleijn [64],
Miet et al. [174], Chennoukh et al. [50]. They are defined as the roots of two symmetric
and anti-symmetric polynomials reflecting the transfer function of the linear prediction
filter as given in Eqn. 6.4 (Itakura [120]). The conversion from AR coefficients to LSF
vectors and vice versa is unique. The outstanding advantage of the LSF representation is
that there is a very simple rule to guarantee stable LP synthesis filters: the elements of the
LSF vector have to be sorted in ascending order, and their values must be between zero
and π . For detailed information on properties of LSF vectors, the reader is referred to the
speech-coding literature, for example, Markel and Gray [168], Paliwal and Kleijn [197].

Other interesting representations of the wideband spectral envelope are cepstral coef-
ficients. The real cepstrum of a signal frame is computed by an inverse discrete Fourier
transform (DFT) of its logarithmized amplitude spectrum. Analogously, the log ampli-
tude frequency characteristics of an AR filter can be approximated by a series of cepstral
coefficients

ln
σ 2

|A(ej�)|2 =
∞∑

i=−∞
ci e−j i�, (6.13)

where ln denotes the natural logarithm to the base of e, and σ is a scalar gain factor. The
cepstral coefficients ci are real valued and even (c−i = ci) owing to the minimum-phase
frequency response of the all-pole filter 1/A(ej�) (Hagen [103]). The cepstral coefficients
c0, c1, . . . can be calculated directly from the AR coefficients a and the gain factor σ via
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a simple recursive formula given, for example, in Markel and Gray [168]

c0 = ln σ 2

ci = −ai −
i−1∑
n=1

n

i
cn ai−n for i > 0, (6.14)

with ai = 0 for i > Na . Note that only the first Na+1 cepstral coefficients derived in this
way are non-redundant, while the remaining ones can be determined from these foremost
coefficients.

A particular advantage of the cepstral representation of AR coefficients is that a mini-
mum mean square error (MMSE) solution for the estimated coefficients ỹ = c̃ corresponds
to a minimization of the log spectral distortion (LSD) measure

d2
LSD =

(
10

ln 10

)2 ∞∑
i=−∞

(ci − c̃i)
2

= 1

2π

∫ π

−π

(
20 log10

σ

|A(ej�)| − 20 log10
σ̃

|Ã(ej�)|

)2

d�. (6.15)

The interest in this distortion measure is motivated by the fact that in speech coding the log
spectral distortion correlates reasonably well with the subjective speech quality. Therefore,
it has found wide acceptance in speech coding to assess the quality of quantizers of
representations (i.e. parameters/coefficients) of the spectral envelope. Cepstral coefficients
have been used for bandwidth extension of speech, for example, in Avendano et al. [23],
Park and Kim [200], and Nilsson and Kleijn [187].

6.4.1.1 Sub-band-based Assembly of the Wideband Spectral Envelope

If we consider the estimation of the wideband spectral envelope, we must distinguish
between missing and available sub-bands: information on the spectral envelope within
the frequency range of the narrowband input speech snb(k) of the BWE algorithm can
be determined by conventional linear prediction techniques. For the missing frequency
band(s), on the other hand, more or less sophisticated estimation methods as illustrated
in Fig. 6.14 have to be used.

This distinction leads to the concept of subdividing the estimation of the (single) wide-
band spectral envelope according to the different frequency bands in the wideband speech
(Jax [128]). The approach is illustrated in Fig. 6.15. First, the estimation of the shape and
(relative) gain of the spectral envelope of the missing frequency band(s) is performed
individually, according to Fig. 6.14. Each estimator of an individual sub-band spectral
envelope can be tuned optimally to the specific properties of the particular frequency band.
The separate estimators output their results in a short-term power spectrum domain. Then,
the assembly of a joint description for the full frequency range of the wideband speech
signal can be performed by simple concatenation of the estimated power spectra from the
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Figure 6.15 Block diagram of the sub-band approach to estimate the AR coefficient set
ã of the wideband speech signal. The sub-band estimators for each missing frequency
band consist of individual statistical estimators as shown in Fig. 6.14

sub-bands. In a final step, the assembled smoothed power spectrum of the wideband signal
is converted into the corresponding AR coefficients ã (e.g. applying an inverse DFT and
the Levinson–Durbin algorithm), which can then be used in the wideband analysis and
synthesis filters of the BWE algorithm.

In general, the aforementioned procedure can be performed with an arbitrary number of
sub-bands. In Fig. 6.15, the algorithm is depicted for three sub-bands, that is, in addition
to the base-band there are two missing frequency bands at low and high frequencies.
Further details on the sub-band-based assembly of the wideband spectral envelope can be
found in Jax [128], Jax and Vary [133].

As illustrated in the lower diagram of Fig. 6.16 (b), the resulting AR coefficients con-
stitute a good estimate of the wideband spectral envelope. In the base-band, the frequency
response of the estimated AR filter (solid line) strongly matches the frequency response of
the optimal AR filter as derived from the original wideband speech (dashed line). There
are only slight deviations visible at the band edges due to errors in the estimated sub-
band power spectra within the neighbouring missing frequency bands. In the extended
frequency bands, there are some errors in the formant structure. Nevertheless, the ample
run of the frequency response is estimated correctly. The common modelling of the spec-
tral envelope of the base-band and extended bands has the advantage that the spectral
envelope of the enhanced speech s̃wb(k) is smoothed in the transition regions between
the bands.

6.4.2 INSTRUMENTAL PERFORMANCE MEASURE

Before discussing various solutions for the sub-blocks of Fig. 6.14 in the remainder of
this chapter, we will now define an instrumental performance measure needed to evaluate
the different alternatives. Later, we are interested in what we can expect from bandwidth
extension algorithms: will it be possible to perform as good as true wideband speech
codecs by extending telephone speech or are there fundamental limits? To answer this
question, BWE of speech shall be examined from an information theoretic perspective in
Sec. 6.4.3.



Bandwidth Extension for Speech 201

0

0

0

2000

2000

4000

4000

6000

6000

8000

8000

-40

-20

20

40

40

60

80

100

120

frequency f [Hz]

frequency f [Hz]

�̃
w

b
(f

)
[d

B
]

1/
∣ ∣ Ã w
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Figure 6.16 Example for the procedure of the sub-band-based estimation of the spec-
tral envelope. In this example, there are two missing frequency bands, below 300 Hz
and beyond 3.4 kHz. For comparison, the respective quantities as derived from the cor-
responding signal frame of the original wideband speech signal are shown by the dashed
curves

6.4.2.1 Auto-regressive Modelling of the Missing Sub-band Spectral Envelope

As described earlier, the spectral envelope of the enhanced speech signal is the principal
key for a high subjective quality of the output signal of a bandwidth extension system.
In Sec. 6.2.3, it was further pointed out that the bandlimited input signal snb(k) shall be
contained transparently in the extended output signal s̃wb(k). This can either be guaranteed
implicitly by the structure of the algorithm as in our approach from Sec. 6.2.3, or the
bandlimited input speech has to be considered explicitly as shown in Fig. 6.6. With both
structures, there will only be errors within the spectral envelope of the extended frequency
band of the output speech s̃wb(k), and a performance measure should accordingly consider
only distortions in this extended frequency band. Since a significant source of distortion
is the attenuation or amplification of the spectral envelope in the extended frequency
band with respect to the base-band spectral envelope, the shape as well as the gain
of the spectral envelope of the extended band shall be investigated. The gain shall be
expressed with respect to the base-band signal components, that is, it shall be a relative
gain as specified later (compare Nilsson et al. [185], Park and Kim [200], Nilsson and
Kleijn [187]).
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Figure 6.17 Modelling of the spectral envelope of the missing (respectively extended)
frequency band with respect to the base-band signal via two sub-band signals smb(k

′′) and
sbb(k

′) (non-general scheme: see footnote 3). For each sub-band signal, the parameters
of an auto-regressive model are obtained from the estimated auto-correlation function
(ACF) via a Levinson–Durbin recursion here. Note that the AR coefficient set abb of the
base-band signal is not utilized

Without loss of generality, it shall be assumed in the following that the wideband speech
signal is constituted from two sub-band signals: the base-band signal that corresponds to
the input signal snb(k) of the bandwidth extension system, and the sub-band signal con-
taining the missing respectively extended frequency components2. The missing frequency
band will be denoted by the subscript mb in the following text. It covers the frequencies
between the lower band edge �mb,l and the upper band edge �mb,u. The base-band of
the speech signal starts at the lower cut-off frequency �bb,l and ends at the upper cut-off
frequency �bb,u of the bandlimited input signal.

For the evaluation of an instrumental performance measure, it is presumed that the
wideband speech signal swb(k) is available. To define the spectral distortion measure, first
the wideband speech signal is split into the two aforementioned sub-band signals (see
Fig. 6.17). This is accomplished by band-pass filtering the wideband signal swb(k), using
two filters with lower and upper cut-off frequencies of �bb,l and �bb,u, and �mb,l and
�mb,u, respectively. The band-pass-filtered signals are further critically downsampled such
that the respective frequency components cover the whole frequency range of � = 0 . . . π

of the downsampled signals3. The two resulting sub-band signals are denoted by sbb(k
′)

for the base-band signal, and by smb(k
′′) for the signal containing the missing frequency

band of the wideband speech. The sampling rates of the downsampled sub-band signals
sbb(k

′) and smb(k
′′) are

fs′ = fs
1

π
(�bb,u −�bb,l) and fs′′ = fs

1

π
(�mb,u −�mb,l), (6.16)

2
Note that there are applications in which there are two (or even more) missing frequency bands, for example,

at low (<300 Hz) and high (>3.4 kHz) frequencies. The performances of the two sub-band estimators can then be
described individually using the approach of this chapter.

3
Employing this procedure, it is inherently assumed that the ratios between the sampling rates of the wideband

speech and of the downsampled sub-band signals are integer valued and that the band limits of the sub-bands are
at suitable frequencies. In a more general scenario, an additional modulation of the sub-band signals is necessary
to ensure that the band limits (e.g. �mb,l and �mb,u) of the sub-bands in the wideband speech are mapped to the
band limits 0 and π of the critically downsampled signals.
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Figure 6.18 Auto-regressive modelling of the spectral envelope of the sub-band signal
containing the missing frequency band. In this example, the missing frequency band
ranges from 4 to 8 kHz

respectively. The corresponding time indices or angular frequencies will be marked
with one (for the base-band) or two (for the missing frequency band) apostrophes in
the following.

In the next step, two individual auto-regressive models are fitted to frames of the two
sub-band signals. For example, the model used for representing the missing frequency
band spectrum |Smb(ej�′′

)|2 is defined by (compare Fig. 6.18)

|Smb(e
j�′′

)|2 ≈
∣∣∣∣ σmb

Amb(ej�′′
)

∣∣∣∣
2

=
∣∣∣∣ σmb

Amb(z′′)

∣∣∣∣
2

z′′=ej�′′
(6.17)

with

Amb(z
′′) = 1+

Na,mb∑
i=1

amb,i (z′′)−i . (6.18)

The parameters of the models are estimated by conventional LP analysis, for example,
by the Levinson–Durbin algorithm (Markel and Gray [168]). This is done individually
for the two sub-band signals sbb(k

′) and smb(k
′′). The results of the LP analysis are the

coefficient set amb, representing the spectral envelope of the missing frequency band, as
well as two gain factors σbb and σmb of the base-band and the missing frequency band,
respectively. Since the relative gain of the extended frequency band shall be measured,
we define σrel = σmb/σbb. The order of amb =

[
amb,1, amb,2, . . . amb,Na,mb

]T
is Na,mb.

The parameters of the auto-regressive model of the missing frequency band of wideband
speech that was defined in the previous paragraphs can alternatively be determined using
selective linear prediction (SLP) techniques as described in Markel and Gray [168, Sec.
6.4]. Similar to the procedure described above (Fig. 6.17), the SLP approach allows to
fit an auto-regressive model to a sub-band of the short-term spectrum of a signal. The
resulting model corresponds to a critically sampled sub-band signal. Since the splitting
of the sub-bands is performed in the frequency domain, the SLP method can flexibly be
adapted to any bandwidth extension scenario (Jax [128]).
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6.4.2.2 Sub-band Log Spectral Distortion Measure

The performance of the estimation of the wideband spectral envelope shall be defined in
terms of the log spectral distortion (LSD) of the missing frequency band. The squared
LSD measure is specified in the frequency domain by (e.g. Markel and Gray [95], Gray,
Buzo, Gray, and Matsuyama [96], Vary et al. [286])

d2
LSD =

1

2π

∫ π

−π

(
20 log10

σrel

|Amb(ej�′′
)| − 20 log10

σ̃rel

|Ãmb(ej�′′
)|

)2

d�′′. (6.19)

Here, the quantities Amb(ej�′′
) and σrel refer to the modelled frequency spectrum and

relative gain of the missing frequency band of original wideband speech, and Ãmb(ej�′′
)

and σ̃rel denote the corresponding estimated parameters as determined by a bandwidth
extension system. Note that, because the LSD measure is evaluated for the critically
downsampled sub-band signal smb(k

′′) containing only the missing frequency band, the
integration range of −π to π in Eqn. 6.19 covers the missing frequency range in the
original wideband speech signal. The unit of dLSD is dB.

Unfortunately, the evaluation of the LSD measure in the frequency domain in general
is quite complicated. Therefore, an alternative representation by a mean-square error
criterion in the cepstral domain, following the definition from Eqn. 6.13, will be used in
the following

ln
σ 2

rel

|Amb(ej�′′
)|2 =

∞∑
i=−∞

ci e−j i�′′
. (6.20)

With this definition, for a sequence of speech frames the root mean square (RMS)
average of the LSD is given by

dLSD =
√

2 10

ln 10

√√√√E

{
1

2
(c0 − c̃0)2 +

∞∑
i=1

(ci − c̃i)2

}
. (6.21)

Here, the function E{·} denotes the expectation operation.
Now, the output representation ỹ of the estimation shall be defined in such a manner that

the estimation performance can be determined by a mean-square error criterion. For this,
the quantity y is defined as a weighted cepstral representation of the missing frequency
band. It can be determined from the cepstral coefficients c0, c1, . . . that represent the AR
model of the spectral envelope of the missing frequency band

yi =
{

1√
2
ci, if i = 0

ci, if 1 ≤ i < d.
(6.22)

The scalar values yi constitute the d-dimensional vector y = [y0, y1, . . . yd−1]T. The
dimension d of y should be at least equal to Na,mb such that all non-redundant cepstral
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coefficients are considered. Inserting the definition of Eqn. 6.22 into Eqn. 6.21 yields the
relationship

d2
LSD ≈

(√
2 10

ln 10

)2 d−1∑
i=0

(yi − ỹi )
2. (6.23)

Note that the term on the right-hand side of Eqn. 6.23 is only an approximation of the log
spectral distortion (Eqn. 6.19) because only the first d summands of the sum in Eqn. 6.21
are considered.

To get a notion of the admissible sub-band log spectral distortion in bandwidth exten-
sion, the LSD performances of several wideband speech codecs (G.722 and AMR-WB at
several bit rates) were investigated in Jax [128]. It was found that the wideband codecs
achieve a near-transparent subjective speech quality even with an RMS LSD of more than
2 dB for the low-frequency band from 50 to 300 Hz, and with an RMS LSD of more than
3 dB for the high-frequency band from 3.4 to 7 kHz. Thus, it is conjectured that it is also
possible in the BWE application to obtain a ‘near-transparent’ speech quality for RMS
LSD values about 2 to 3 dB.

6.4.3 THEORETICAL PERFORMANCE BOUND

It is plausible that an extension of the bandwidth of speech signals is only possible, if
there are sufficient dependencies between the available bandlimited speech signal and
the missing frequency components. The fact that the narrowband speech and the missing
signal components are results of the same physical speech production process gives rise
to the assumption that there are such dependencies in speech signals. This assumption
is supported by the success of many BWE methods published throughout the last two
decades. There are only few publications, however, that shade some light onto the infor-
mation theoretic background of artificial bandwidth extension (Nilsson et al. [185, 186],
Nordén et al. [188], Jax and Vary [131], Yang et al. [297], Epps [65]).

In digital signal processing, linear dependencies between signals are commonly described
in terms of correlation factors. In an information theoretic perspective, the dependencies
between different signals are described by their mutual information (MI), for example,
Cover and Thomas [52]. In contrast to the correlation measure, mutual information covers
all kinds of linear and non-linear dependencies. The aim of this section is to investigate
the relationship between an upper bound on the achievable quality of a BWE algorithm
(measured in terms of the instrumental performance measure from the previous section) on
one hand, and the mutual information between representations of the bandlimited speech
(feature vector x) and of the missing frequency components (sub-band spectral envelope
y) on the other hand.

The quantity ỹ as defined in Eqn. 6.22 can be calculated for any BWE algorithm,
either from the extended speech signal or directly from the estimated representation of
the wideband spectral envelope (e.g. as ã in Fig. 6.5) if applicable. Therefore, an upper
bound on the performance of a generalized BWE algorithm – measured in terms of the
RMS LSD or the mean-square error of ỹ, respectively – also constitutes a bound on the
performance of any other BWE algorithm with a differing representation of the wideband
spectral envelope.
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If we assume a memoryless, deterministic estimation4 of ỹ = f (x) of the missing
spectral envelope from the feature vector x, a relation between the mutual information
I (x; y), expressed in nats (Cover and Thomas [52]), and the minimum possible mean
square estimation error of ỹ can be formulated (Jax and Vary [131], Jax [128])

E{‖y− ỹ‖2} ≥ d

2πe
exp

(
2

d

(
h(y)− I (x; y)

))
. (6.24)

The relation depends on the differential entropy h(y) = −E
{

ln p(y)
}
, which comprises

statistical properties of the estimated quantity y. Further, d = dim y.
Owing to the weighting of the representation y of the missing frequency band, the

mean-square error E{‖y − ỹ‖2} resembles a truncated version of the cepstral distance
within the square root of Eqn. 6.21. Because the truncated elements are non-negative, we
find the inequality

dLSD ≥
√

2 10

log 10

√
E
{‖y− ỹ‖2

}

≥
√

2 10

log 10

√
d

2πe
exp

(
1

d

(
h(y)− I (x; y)

))
. (6.25)

which gives a lower bound on the achievable RMS log spectral distortion in dependence
of the mutual information I (x; y) and differential entropy h(y). While the differential
entropy h(y) only depends on statistical properties of the cepstral representation y, the
mutual information I (x; y) additionally depends on the chosen feature set x.

In the following, we will give examples of bounds defined by Eqn. 6.25 for the band-
width extension of telephone speech. Two applications will be considered: extension
towards low frequencies below 300 Hz and extension to high frequencies above 3.4 up
to 7 kHz. In Jax [128], differential entropies h(y) have been approximated for these
applications by numerical simulations using the large SI100 speech corpus from the Bay-
erisches Archiv für Sprachsignale (BAS) (Schiel [234]). The SI100 corpus contains more
than 35 hours of continuous wideband German speech spoken by 101 male and female
speakers. The resulting bounds for the two aforementioned applications are illustrated
in Fig. 6.19 in dependence of the mutual information. Similar investigations have been
reported for the TIMIT database in Jax and Vary [131]. Details on the mutual information
obtained for different feature sets will be presented in Sec. 6.5.

Unfortunately, it is in the nature of the information theoretic bound that it does not point
out a particular strategy to design estimators that are optimal in the sense of minimizing
the log spectral distortion measure. However, from the dependency of the performance
bounds from the mutual information I (x; y), it can be concluded that it is advantageous
to select the elements of the utilized feature vector x such as to maximize the mutual
information I (x; y) (compare Sec. 6.5). To obtain the best possible quality with the BWE

4
Note that we do not assume anything about the particular realization of the estimator: the function f (x) can

be interpreted as a generalized description of any kind of linear or non-linear classification or estimation with
arbitrary complexity–including the approaches commonly used for BWE, for example, codebook mapping, linear
mapping, statistical estimation, and neural networks.
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Figure 6.19 Lower bounds on the RMS log spectral distortion dLSD for memoryless
bandwidth extension of telephone speech (300 Hz–3.4 kHz). The bounds are given for
speaker-independent (SI) and speaker-dependent (SD) solutions

system, it appears favourable – at least if the available mutual information I (x; y) is
low – to aim at speaker-dependent approaches.

Since the theoretical bound of Eqn. 6.25 is not tight, however, high mutual information
I (x; y) only is a necessary but not a sufficient condition for achieving a high performance
with a specific feature vector x. Thus, by observing the bound in Fig. 6.19, we cannot
acquire knowledge on what we can expect from BWE algorithms but only on what we
can not expect. We will see at the end of Sec. 6.5 that by selection of proper elements to
include in the feature vector x it was to date only possible to achieve a mutual information
of about 3 bit at best. Inserting this value into Eqn. 6.25 results in lower bounds of about
3 dB for speaker-independent solutions in both considered applications. Consequently,
we can safely conclude that it is not possible, at least with the investigated features, to
outperform the quality of wideband speech codecs by bandwidth extension.

6.5 FEATURE SELECTION

In this section, the focus shall be on the feature extraction block that is preceding the step
of estimating the wideband spectral envelope (see Fig. 6.14). In general, feature extraction
and estimation of the wideband spectral envelope are performed on a frame-by-frame basis
with frame lengths of about 10 to 30 ms. The feature extraction reduces the dimensionality
of each frame of the narrowband signal snb(k) such that the subsequent estimation of the
spectral envelope representation is feasible and computationally efficient. The result is the
feature vector x = [x1, . . . xb]T with the dimension b = dim x. Usually, representations of
the spectral envelope of the narrowband signal snb(k) are used as features, for example,
LPC or LSF vectors or cepstral coefficients. In some contributions, additional features
such as voicing criteria are taken into account. Here, we want to find some measures that
help in finding the best composition of the feature vector x.



208 Audio Bandwidth Extension

The optimal feature extraction method (in the sense of high-quality bandwidth exten-
sion) for a fixed dimension of the feature vector allows the BWE algorithm to achieve the
best subjective performance as compared to all other possible mappings with the same
dimension. Unfortunately, evaluation and comparison of the subjective performances for
a large number of alternative algorithms and/or feature sets x is very time consuming.
Therefore, other means have to be used to assess the ‘quality’ of single features or feature
vectors – instrumental measures are needed that provide suggestive hints for the selection
of the best feature set.

In the next two sub-sections, two instrumental measures from information theory and
statistics will be reviewed. In Sec. 6.5.3, the linear discriminant analysis (LDA) that
results from an optimization of the separability measure will be introduced. With an LDA,
the dimension of a feature vector can be reduced while the maximum discriminating power
of the features is retained. In the last sub-sections, the usability of different features, well-
tried and new ones, for the BWE problem will be evaluated using the introduced measures
and procedures. The insights and results of this section are mostly independent from the
particular approach used for estimating the wideband spectral envelope.

6.5.1 MUTUAL INFORMATION

Shannon’s mutual information (MI) I (x; y) gives the mean information we gain on the
estimated wideband spectral envelope representation y by knowledge of the feature vector
x. Mutual information can be regarded as an indication of the feasibility of the estimation
task (Nilsson et al. [186], Jax and Vary [131]): in Sec. 6.4.3, it has been shown that for
a specific mutual information I (x; y) the minimum achievable mean-square estimation
error E

{‖y− ỹ‖2
}

is lower bounded. The larger the MI, the lower is the bound. Hence,
a large mutual information I (x; y) is a necessary condition for high-quality estimation
of y from the observations x. Now, we want to investigate the mutual information for
different features x of the narrowband speech signal.

For estimating the mutual information I (x; y), we have to use a parametric approach
because of the high dimension of the continuous vectors x and y. The joint probability
density function (PDF) p(x, y) is approximated by a Gaussian mixture model (GMM)
p̃(x, y), that is, a sum of L weighted multivariate Gaussian densities N (·) with mean
vectors µl and covariance matrices Vl

p̃(x, y) =
L∑

l=1

ρl N (x, y;µl, Vl ) ≈ p(x, y). (6.26)

The scalar weights ρl and the parameters µl and Vl of the individual Gaussians are
trained by the expectation-maximization (EM) algorithm5. Then, the mutual information
is estimated numerically from the parameters of the GMM (Hedelin and Skoglund [106])

I (x; y) ≈ Ep̃(x,y)

{
log

p̃(ẋ, ẏ)

p̃(ẋ) p̃(ẏ)

}

5
Further details on Gaussian mixture models can be found in Sec. 6.8.
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≈ 1

M

M∑
ν=1

log
p̃(ẋ(ν), ẏ(ν))

p̃(ẋ(ν)) p̃(ẏ(ν))
. (6.27)

In the computation of Eqn. 6.27, the vector pairs ẋ(ν), ẏ(ν) are generated synthetically
according to the model PDF p̃(x, y). In our investigations presented in Sec. 6.5.5, we
have used L = 256 Gaussians with full covariance matrices. The numerical evaluation of
Eqn. 6.27 was performed with M = 106 synthetic vector pairs (Jax [128]).

From the definition of mutual information, for example, Cover and Thomas [52], the
following important properties of this measure for feature selection can be found:

• If the relation between two different feature vectors is defined by a bijective mapping,
the MI is identical for both feature vectors. In this case, the MI measure does not
provide any hint on which feature set shall be preferred.

• If several parameters of the narrowband speech (say xA, xB and xC) form a Markov
chain xA → xB → xC , that is, if xC is calculated from xB , and xB is calculated from
xA, it appears favourable to select the very first element xA of the chain as a feature.
Owing to the data-processing inequality (Cover and Thomas [52]), MI is maximized
by this choice.

• For combined feature vectors, the MI cannot be simply added. In general, the MI has
to be estimated again for the new vector.

6.5.2 SEPARABILITY

From the field of pattern recognition, the separability is known as a measure of the
quality of a particular feature set for a classification problem (Fukunaga [79]). In the
BWE application, the class definitions should best be adopted to the method used to
estimate the wideband spectral envelope: for example, if codebook mapping is used (Carl
[44]), the classes should correspond to the correct codebook indices as computed from
true wideband speech. For an HMM-based approach (Jax and Vary [133]), the classes
should be the true HMM state information.

The separability measure can be calculated from a labelled set of training data, that is,
for each feature vector in the set the corresponding class must be known. Let �i denote
the set of feature vectors x assigned to the ith class. The number of feature vectors in the
ith set is N�i

= |�i |. The constant NS denotes the number of classes. Then, the total
number of frames in the training data is given by Nm = ∑NS

i=1 N�i
. From the labelled

training data, the within-class covariance matrix

Vx = 1

Nm

NS∑
i=1

∑
x∈�i

(x− µi)(x− µi)
T (6.28)

and the between-class covariance matrix

Bx =
NS∑
i=1

N�i

Nm

(µi − µ)(µi − µ)T (6.29)
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are calculated, where

µi = 1

N�i

∑
x∈�i

x and µ =
NS∑
i=1

N�i

Nm

µi. (6.30)

The separability measure shall be larger if the between-class covariance gets larger
and/or if the within-class covariance gets smaller. Accordingly, the separability measure
is empirically defined by the term Jx = V−1

x Bx. To obtain a scalar measure for the
separability of the classes, a trace criterion is used (Fukunaga [79])

ζ(x) = tr Jx = tr
(

V−1
x Bx

)
. (6.31)

The separability depends on the definition of the classes. Comparing ζ(x) for different
feature vectors x with the same class definitions, a larger value indicates a better suitability
of the corresponding feature vector for classification and estimation.

The separability measure has the following properties:

• The definition of the separability measure is based on the implicit assumption of a nor-
mal distribution of the feature vectors that are assigned to each class. If this assumption
is not valid, the significance of the separability measure is reduced.

• By the separability measure, all classes are treated alike. Therefore, the separability
of two very similar classes (w.r.t. the represented speech sound) is rated like the
separability of two very different classes. Hence, maximizing the separability does not
necessarily lead to the optimum achievable estimation performance (e.g. in the MMSE
sense) of the subsequent estimation rule.

• In general, the values of the separabilities cannot be added up if several features are
assembled to a composite feature vector. In this case, the separability of the composite
feature vector must be measured anew.

6.5.3 LINEAR DISCRIMINANT ANALYSIS

The purpose of the linear discriminant analysis (LDA) is to obtain a feature vector with
maximal compactness (Fukunaga [79]): starting from a high-dimensional ‘super-vector’
x0, the dimension of the feature vector x shall be reduced, while the discriminating power
shall be retained or decreased as little as possible. The reduction of dimension is performed
(in the BWE application phase) by means of a linear transformation

x = HT x0, (6.32)

where the matrix H is a β × b matrix with b = dim x < β = dim x0. The column vectors
in H shall be linearly independent.

The matrix H is optimized such that the separability of x is maximized (Fukunaga [79])

H = arg max
H

ζ(x), where (6.33)

ζ(x) = tr
(
V−1

x Bx
) = tr

(
HTV−1

x0
Bx0H

)
.
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The solution to Eqn. 6.33 is achieved by composing the matrix H from the eigenvectors
�1,�2 . . . �b that are assigned to the b largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λb of
V−1

x0
Bx0 . The computationally complex preparation of the transformation matrix H is

performed only once, off-line during the training phase of the BWE algorithm.
The LDA makes it possible to take many primary features of the bandlimited speech

signal into account, using a high-dimensional super-vector x0. Nevertheless, the dimension
of x can be small – without loosing too much discriminating power – such that the com-
putational complexity and memory consumption of the subsequent estimation algorithm
are low.

6.5.4 PRIMARY FEATURES

In the following text, brief definitions and descriptions of features of the narrowband
speech snb(k) typically used in bandwidth extension algorithms for speech are given.
For further particulars on specific features, the reader is referred to Jax [128] and the
cited literature.

Coefficients of the auto-correlation function (ACF) are often used for the voiced/unvoi-
ced classification of speech segments (Campbell and Tremain [43], Wang [294]). Espe-
cially, the normalized first coefficient of the ACF is used because it reflects the spectral
tilt of the signal spectrum. The normalized coefficients of the ACF can be estimated as
follows

xacf(λ) =

Nκ−1∑
κ=λ

snb(κ − λ) snb(κ)

Nκ−1∑
κ=0

(snb(κ))2

, (6.34)

where λ denotes the index of the ACF coefficient, and Nκ is the number of samples per
frame. Later, we will investigate the first ten coefficients (λ = 1 . . . 10) and the ACF at
the pitch lag (see below).

Coefficients of a linear prediction filter (LPC) In linear predictive coding (LPC) of
speech signals, FIR prediction filters with the coefficients ai, i = 1 . . . Na are used (com-
pare Sec. 6.2.1). The prediction filter is described by the difference equation

s̃nb(k) = −
Na∑
i=1

ai snb(k − i). (6.35)

The optimal (in the sense of minimizing the power of the error signal snb(k)− s̃nb(k)) filter
coefficients ai are derived from the first coefficients of the auto-correlation function of
the speech signal snb(k) utilizing, for example, the Levinson–Durbin algorithm (Makhoul
[166], Markel and Gray [168]).
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The line spectral frequencies (LSFs) are an alternative representation of the LPC coef-
ficients from the previous paragraph (Itakura [120]). The LSF coefficients have several
advantageous properties with regard to coding and interpolation (Paliwal [196], Vary et al.
[286]), compare Sec. 6.4.1. Therefore, this representation of the LPC coefficients is often
used in speech codecs. It has been used for bandwidth extension in Miet et al. [174],
Chennoukh et al. [50].

LPC-derived cepstral coefficients (LPC-cepstrum) The transfer function of an LP syn-
thesis filter can be represented by an infinite sequence of cepstral coefficients (e.g. Sec.
6.4.1, Markel and Gray [168], Hagen [103]). The according cepstral coefficients ci are cal-
culated from the prediction coefficients ai by the simple recursive formula from Eqn. 6.14.
The cepstral representation has the advantage of a good decorrelation of the coefficients.
This is advantageous for modelling the PDF p(x). LPC-derived cepstral coefficients have
been used for BWE first in Abe and Yoshida [11] and Avendano et al. [23].

Linear cepstral coefficients A cepstral representation of the spectral envelope of the
speech signal can alternatively be calculated from the magnitude spectrum of the signal
frame. For this purpose, the speech frame is transformed into the frequency domain via
a discrete Fourier transform (DFT). Then, the logarithm is applied to the magnitude
spectrum, and the result is transformed to the cepstral domain with an inverse DFT
(Oppenheim and Schafer [194]). If the cepstrum is truncated, the coefficients represent a
cepstrally smoothed version of the magnitude spectrum of the input speech signal.

The mel-frequency cepstral coefficients (MFCC) are based on the perceptually moti-
vated mel-scale filter-bank. This representation is frequently used in speech recognition
(Davis and Mermelstein [57], Rabiner and Juang [216]). The MFCC have been utilized
for BWE in Enbom and Kleijn [64] and Nilsson and Kleijn [187].

The calculation of the MFCC vector for a signal frame is performed in several steps:
first, a pre-emphasis filter is applied to the input speech. Then, the Fourier coefficients
are calculated via windowing (Hamming window), zero-padding and DFT. The Fourier
coefficients are combined into 31 filter-bank outputs according to the mel-scale filter-
bank as, for example, defined by Davis and Mermelstein [57]. The inverse discrete cosine
transform is applied to the logarithms of the 31 filter-bank outputs, which yields 31
cepstral coefficients. The first cepstral coefficients are finally combined in the MFCC
feature vector. Note that the MFCC representation includes information on the gain or
power of the input speech in the feature vector because the signal is not normalized during
the calculation of the MFCC.

The normed frame energy Energy-based criteria provide a quite robust indication for
voice activity, for example, Rabiner and Schafer [217], at least if the signal-to-noise ratio
is sufficiently high. The signal power further differs for distinct speech sounds: in general
the short-term power of the signal is greater for voiced sounds, while it is lower for
unvoiced sounds. To become independent of long-term variations of the signal power, the
frame energy has to be normalized adaptively.
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For the mth frame, the normed logarithmic frame energy may, for example, be calcu-
lated by

xnrp(m) = log E(m)− log Emin(m)

log E(m)− log Emin(m)
, (6.36)

with

E(m) =
Nκ−1∑
κ=0

s2
nb(κ)

Emin(m) =
Nmin
min
µ=0

E(m− µ)

E(m) = α E(m− 1)+ (1− α) E(m).

A reasonable setting for telephone speech sampled with fs = 8 kHz and with a frame rate
of 50 frames/sec is to use a forgetting factor of α = 0.96 and a size of Nmin = 200 for
the minimum search window.

The gradient index has been proposed for the voiced/unvoiced classification of speech
segments (Paulus [207, 206]). The measure is based on the sum of magnitudes of the
gradient of the speech signal at each change of direction

xgi =
Nκ∑
κ=2

�(κ) |snb(κ)− snb(κ − 1)|√
1

Nκ
E(m)

. (6.37)

�(κ) is an indicator function for the ‘change of direction’ of the signal. That is, �(κ) =
1/2 |ψ(κ)−ψ(κ−1)|, where the variable ψ(κ) denotes the sign of the gradient snb(κ)−
snb(κ − 1), that is, ψ(κ) ∈ {−1, 1}.

The zero-crossing rate counts the number of times the signal crosses the zero level
within each frame (Sec. I.3.2.4 and Eqn. I.1). The zero-crossing rate has been used exten-
sively in speech recognition (Rabiner and Schafer [217]) and as a voicing criterion (Atal
and Rabiner [22], Campbell and Tremain [43], and Wang [294]).

The pitch period in the current speech frame depends on the instantaneous fundamental
frequency F0 of the speech signal. Its calculation is based on the auto-correlation function
of the signal (see above): the position of the local maximum of the ACF in a limited range
of reasonable time lags, for example, corresponding to pitch frequencies between 60 and
400 Hz, gives the estimated pitch period (e.g. Hess [109], Vary et al. [286]).

The kurtosis is a measure from higher-order statistics that is based on the fourth and
second-order moments of the signal. Here, we use an estimate of the local kurtosis
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(Krishnamachari [149])

xk =

1

Nκ

Nκ−1∑
κ=0

(snb(κ))4


 1

Nκ

Nκ−1∑
κ=0

(snb(κ))2




2
. (6.38)

The kurtosis is a measure of the ‘Gaussianity’ of a random signal, and it is a dimen-
sionless parameter. A Gaussian random variable has a kurtosis of 3. In the short-term,
it can be observed that the local kurtosis is less than 3 for most voiced speech sounds.
There are substantial peaks in the local kurtosis measure at the onset of plosives and of
strong vowels.

The spectral centroid is defined as the ‘centre of gravity’ of the magnitude spectrum of
the bandlimited speech, reflecting its ‘brightness’ (see Sec. 1.4.6 on timbre)

xsc =

Ni/2∑
i=0

i · ∣∣Snb(e
j�i )

∣∣
(

Ni

2
+ 1

) Ni/2∑
i=0

∣∣Snb(e
j�i )

∣∣
. (6.39)

The quantity Snb(ej�i ) labels the ith coefficient of a discrete Fourier transformation
(DFT) of the length Ni of the input signal frame. The spectral centroid is mainly around
1500 Hz (corresponding to xsc ≈ 0.35 for a sampling rate of 8 kHz) for voiced speech
sounds and increases significantly for unvoiced speech segments (Heide and Kang [107],
Abdelatty Ali et al. [17], Abdelatty Ali and Van der Spiegel [16]). Note that this definition
of spectral centroid xsc differs from the spectral centroid CS (Eqn. 1.95).

The spectral flatness is defined as the ratio between the geometric and arithmetic mean
of the estimated power spectrum

xsfm =

Ni

√√√√Ni−1∏
i=0

∣∣Snb(ej�i )
∣∣2

1

Ni

Ni−1∑
i=0

∣∣Snb(e
j�i )

∣∣2
. (6.40)

Because the arithmetic mean of a sequence of non-negative values is always greater
than (or equal to) its geometric mean, the spectral flatness is between zero and one. The
spectral flatness has, for example, been used to measure the tonality of signal segments
(Johnston [136]).
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6.5.5 EVALUATION

In this section, feature extraction for the typical application of bandwidth extension of
telephone speech will be considered. That is, the narrowband speech signal snb(k) has
frequency components in the range of 0.3–3.4 kHz. By the BWE algorithm, a wideband
signal swb(k) with frequency components from 50 Hz up to 7 kHz shall be produced.
We distinguish between the applications of low-frequency extension (below 300 Hz) and
high-frequency extension (3.4–7 kHz).

For measuring mutual information and separability, speech signals are sub-divided into
frames with a length of 20 ms. For each signal frame, all of the primary features defined
in Sec. 6.5.4 and (from corresponding wideband speech) the vector y is determined. The
vector y consists of weighted cepstral coefficients representing the gain and shape of the
spectral envelope within the missing frequency band (50–300 Hz respectively 3.4–7 kHz)
according to Eqn. 6.22. All of the measurements were performed using the BAS SI100
speech corpus (Schiel [234]).

Mutual information and separability The estimated mutual information and separabil-
ities between y and the investigated primary features are listed in Table 6.1. It can be
observed that the features describing the spectral envelope of the bandlimited speech in
fact play a major role for the bandwidth extension. Both the mutual information and
the separability measures are maximal for these features. It must be taken into account,
however, that the dimension of the primary features from this group is ten times higher
than those of the scalar features. The mutual information and separabilities for the MFCC

Table 6.1 Estimates of mutual information I (x; y) and separability ζ(x) for bandwidth extension
of telephone speech (0.3–3.4 kHz). For calculating the separability, the 16 classes were defined by
vector quantizing the true wideband spectral envelope representation y (Jax and Vary [133])

Feature vector x dim x Towards high frequencies Towards low frequencies

I (x; y) ζ(x) I (x; y) ζ(x)

[bit/frame] (16 classes) [bit/frame] (16 classes)

ACF 10 2.6089 1.6349 2.7530 2.3977
LPC 10 2.3054 1.5295 2.1100 1.7901
LSF 10 2.3597 1.5596 2.2125 2.5817
LPC-cepstrum 10 2.2401 1.4282 2.1778 2.3879
Cepstrum 10 2.3075 1.5483 1.9398 2.5473
MFCC 10 2.3325 2.2659 3.0771 6.6142

ACF ( 1 ) 1 0.7514 1.1237 0.7324 1.1065
ACF ( pitch period ) 1 0.4450 0.4058 0.5441 0.6745
Frame energy 1 0.9285 1.0756 1.3968 4.2328
Gradient index 1 0.8011 1.2520 0.5403 0.6983
Zero-crossing rate 1 0.7453 1.0795 0.7456 1.1685
Pitch period 1 0.2451 0.0530 0.4823 0.1122
Local kurtosis 1 0.2037 0.0225 0.2979 0.0809
Spectral centroid 1 0.7913 1.0179 0.6630 0.9276
Spectral flatness 1 0.4387 0.3538 0.4201 0.4648
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feature vector are highest because this vector already incorporates some information on
the power level of the narrowband speech.

To achieve the best results with the BWE algorithm, it can further be motivated from
Table 6.1 to additionally include certain scalar features in the feature vector. Particularly,
the consideration of the frame energy as well as the gradient index, zero-crossing rate,
and/or spectral centroid is very promising.

Linear discriminant analysis To evaluate the impact of a linear discriminant analysis,
the estimation quality obtained with the transformed feature vectors was determined. The
HMM-based MMSE estimation rule from Sec. 6.9 (Jax and Vary [133]) was used with
NS = 64 HMM states and L = 16 mixture components in the state-specific GMMs.
Both speaker-dependent and speaker-independent models were investigated. The results
are expressed in terms of the root mean square log spectral distortion (RMS LSD) of the
estimated spectral envelope within the missing frequency band, according to the definition
of the performance measure from Sec. 6.4.2. The 15-dimensional feature super-vector x0
consisted of the first 10 normalized auto-correlation coefficients, the zero-crossing rate,
the normed frame energy, the gradient index, the local kurtosis, and the spectral centroid.

In Fig. 6.20, the mean performances that were obtained both without LDA and with
the application of LDAs for the dimensions b = 1 . . . 5 are depicted. As expected, the
distortions of the estimates are decreased by increasing the dimension of the LDA trans-
form. Remarkably, the achieved performances with a dimension of the LDA transform of
b = 5 are even superior to those of the estimator that uses the original non-transformed
feature vectors with a dimension of β = 15. This effect is the result of the improved
compactness of the feature vectors: if the dimension of the feature vectors x is reduced
significantly, the quality of the statistical modelling is enhanced. Thus, by utilizing a
linear discriminant analysis, the performance and robustness of the bandwidth extension
system can be improved, yet simultaneously reducing the computational complexity of
the estimation algorithm substantially.

1 2 3 4 5 15
(no LDA)Dimension b of LDA

5.5

6

6.5
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speaker-independent BWE

speaker-dependent BWE

Figure 6.20 Impact of a linear discriminant analysis on the estimation performance
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6.6 CODEBOOK MAPPING

The first and most commonly used method for estimating the wideband spectral envelope
is the codebook mapping approach (Carl and Heute [45], Yoshida and Abe [301], Carl
[44], Yasukawa [299]). The principle of this class of algorithms is based on the observation
that there occur only a limited number of typical sounds (i.e. typical shapes of the spectral
envelope) in speech signals. Accordingly, the codebook mapping approach is based on a
pair of coupled codebooks that contain representations of the spectral envelopes of the
narrowband and wideband speech, respectively.

The basic algorithm is depicted in Fig. 6.21. For each signal frame, the spectral envelope
of the narrowband speech signal, represented by the feature vector x, is compared to a list
of typical narrowband spectral envelopes that are stored in a pre-trained codebook. The
most similar codebook entry is selected. In parallel to the searched primary narrowband
codebook, there exists a second codebook, the so-called shadow codebook, which contains
corresponding wideband spectral envelope representatives. Hence, the estimate ỹ of the
wideband spectral envelope is simply the entry of the shadow codebook that is assigned
to the previously selected codebook entry of the narrowband codebook.

The estimates ỹ are confined to the discrete entries ŷ of the shadow codebook. This
is beneficial, on one hand, because it is guaranteed that the estimate yields stable LP
synthesis filters in the BWE algorithm framework. On the other hand, the performance
of the codebook mapping method is restricted by the number and quality of the entries
in the corresponding codebooks.

To improve the performance of the codebook mapping approach, some authors have
proposed to use interpolation methods. Then, instead of a simple table lookup, the estimate
ỹ is determined by a weighted sum of all or the most probable codebook entries

ỹ =
NS∑
i=1

wi ŷi , (6.41)

x
Index

i ỹ

Narrowband
‘primary’ codebook

Wideband
‘shadow’ codebook

Find most
similar entry

Table
lookup

Figure 6.21 Estimation of the spectral envelope representation y via codebook mapping.
Corresponding entries with the same index in both codebooks reflect properties of the same
typical speech sound
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where ŷi denotes the ith entry of the shadow codebook. The weights 0 ≤ wi ≤ 1 have to
be normed such that

∑NS
i=1 wi = 1. The individual weights wi are, for example, inverse

proportional to the distance of the feature vector x to the respective codebook entry x̂i

(Epps [65]).

6.6.1 VECTOR QUANTIZATION AND TRAINING OF THE PRIMARY CODEBOOK

In the following paragraph, the entries of the primary narrowband codebook shall be
defined by vector quantization (VQ) of the feature vector x. Each code vector of the VQ
represents the properties of a typical speech sound. For a comprehensive introduction into
vector quantization see, for example, Gersho and Gray [87] and Gray and Neuhoff [97].

Vector quantization of the b-dimensional feature vectors x = [x0, . . . xb−1]T is described
by the mapping Q : R

b → Cx from the b-dimensional Euclidian space into the finite sub-
space Cx. This sub-space is defined by a codebook Cx in which all possible representatives
x̂i are combined, that is, Cx = {x̂1, . . . x̂NS }. The number of representatives is denoted
by NS .

The quantization mapping Q is defined such as to minimize some error criterion d(x, x̂i )

between the input vectors x and the entries x̂i , i = 1 . . . NS of the vector codebook

Q(x) = arg min
x̂i∈Cx

d(x, x̂i ). (6.42)

Note that quantization with this mapping in general requires an extensive codebook search.
There exist computationally more efficient, albeit sub-optimal, schemes that are com-
monly used for large codebooks, for example, multi-stage vector quantization (MSVQ)
(Gersho [87]).

By the mapping from Eqn. 6.42, a region ϒi of the b-dimensional Euclidian space, the
quantizer cell, is assigned to each code vector x̂i

ϒi =
{
x ∈ R

b : d(x, x̂i ) < d(x, x̂j ), ∀x̂j ∈ Cx \ {x̂i}
}
. (6.43)

The set union of all quantizer regions ϒi fills the entire Euclidian space R
b without

overlappings, that is,
⋃NS

i=1 ϒi = R
b, and ϒi ∩ ϒj = ∅ for any j �= i.

During training of the vector quantizer, the objective is to minimize the mean quantiza-
tion distortion. For a fixed number NS of code vectors, this is accomplished by modifying
the code vectors according to

Cx = arg min
C

E { d(x, Q(x))}

≈ arg min
C

1

Nm

Nm−1∑
m=0

min
x̂∈C

d(x(m), x̂). (6.44)

This task is usually performed by an iterative refinement procedure based on a large set
of training vectors x(m), m = 0 . . . Nm − 1. Commonly, the well-known LBG algorithm
(Linde et al. [162]) is used, which is a variant of the generalized Lloyd algorithm (Lloyd
[163]). By the training, a clustering of the training data is obtained.
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6.6.2 TRAINING OF THE SHADOW CODEBOOK

Because there is a fixed relationship between the entries of the primary codebook and
of the shadow codebook, the shadow codebook cannot be trained until having obtained
the primary codebook. The entries ŷi of the shadow codebook Cy are then defined by
clustering of the training data w.r.t. the primary codebook Cx.

Since the mapping between x and y is not unique, the ‘quantizer cells’, defined by VQ
of x but situated in the Euclidian space of y, will in general be overlapping. Individual
cells may even be discontiguous. Accordingly, to describe the regions assigned to the ith
code vector ŷi , it is not sufficient to use a minimum distortion criterion like in Eqn. 6.43.
Instead, the d-dimensional conditional probability density function p(y|x ∈ ϒi) with y =
[y0 . . . yd−1]T has to be employed. With this, we can define the optimal code vectors as

ŷi = arg min
ŷ∈Rd

E
{

d(y, ŷ)
∣∣x ∈ ϒi

}

= arg min
ŷ∈Rd

∫
Rd

p(y|x ∈ ϒi) d(y, ŷ) dy. (6.45)

If, for example, the mean-square error criterion d(y, ŷ) = ‖y−ŷ‖2 is used, then Eqn. 6.45
is solved by the conditional expectation ŷi = E{y|x ∈ ϒi}. The ith expectation can be
determined using a large number of pairs of training vectors {x(m), y(m)}, m = 1 . . . Nm

by averaging the vectors y extracted from those signal frames for which x(m) ∈ ϒi .
The performance of the vector quantization approach strongly depends on the choice

of representations of x and y, and on the chosen distortion measures d(x, x̂) respectively
d(y, ŷ). Since in most implementations of the codebook mapping method for BWE the
feature vector x reflects some representation of the spectral envelope of the narrowband
speech, usually distortion measures used in speech coding for optimizing the quantization
of LPC coefficients are employed, for example, Gray and Markel [95] and Gray et al.
[96]. In principle, it is not necessary that the distortion measures for the primary and
shadow codebook are identical.

Besides the distortion measure(s), the performance of codebook mapping depends on
the sizes of the primary and/or shadow codebook. The estimation distortion is lower,
the higher the number of codebook entries. Several authors have found that the codebook
mapping performance in bandwidth extension for telephone speech saturates for codebook
sizes greater than about 256 (Carl [44], Epps [65]). In Epps [65], algorithms have been
developed that allow to decrease the size of the shadow codebook (with a fixed primary
codebook) without sacrificing lots of performance.

6.7 LINEAR MAPPING

Another approach that has been used successfully to estimate the representation y of the
wideband spectral envelope from a feature vector x is by linear mapping or piecewise-
linear mapping, for example, Nakatoh et al. [183], Epps and Holmes [66], and Miet et al.
[174]. With linear mapping, an estimate of the unknown quantity y is derived from the



220 Audio Bandwidth Extension

observed feature vector x by the transformation

ỹ = AT · x. (6.46)

The dimension of the transformation matrix A is b × d with b = dim x and d = dim y.
The whole a priori knowledge on dependencies between x and y is contained in the matrix
A, which is derived and stored during the off-line training phase of the BWE system (see
below). Therefore, there are no large memory requirements with this approach. Further,
the estimation rule in Eqn. 6.46 is very simple to implement and computationally efficient.

A problem of the linear mapping algorithm is that it is in general not possible to strictly
confine the estimates ỹ to a reasonable and admissible range of values. Accordingly,
mainly depending on the chosen representations of x and y, applying the linear mapping
rule sometimes results in an instability of the LP synthesis filter in the BWE system.

To prevent strong artefacts, such severe estimation errors are commonly concealed by
mostly heuristically derived countermeasures. For example, in Chennoukh et al. [50],
wideband LSF vectors (y) are estimated from the narrowband LSF vectors (x). This
sometimes results in LSF elements larger than π , which makes it necessary to scale down
the estimated vector so far that all elements are well below π (cf. Sec. 6.4.1). Although
preventing the worst, such measures impair the mean estimation performance.

Another flavour of linear mapping was used in Avendano et al. [23]. This contribution
has the distinctive feature that the estimate ỹ(m) depends not only on the features x(m)

extracted from the current frame m but also on the features from a number of preceding
and following signal frames. In this case, the concept of linear mapping corresponds to
multi-dimensional filtering.

6.7.1 TRAINING PROCEDURE

During the training phase of the bandwidth extension system, the transformation matrix
A has to be found. For this purpose, a database of true wideband speech is needed. By
band-pass filtering, the corresponding narrowband speech is produced, and both signals
are cut into time-aligned signal frames. From each pair of wideband and narrowband
signal frames, the vectors y and x are extracted and collected in two large matrices
Fy and Fx. The rows of the matrix Fy consist of the d-dimensional training vectors
y(m), m = 0 . . . Nm computed from the wideband speech, and the rows of Fx consist of
b-dimensional feature vectors x(m) extracted from the corresponding narrowband speech
frames

Fy =




yT(0)

yT(1)
...

yT(Nm − 1)


 and Fx =




xT(0)

xT(1)
...

xT(Nm − 1)


 . (6.47)

The number Nm denotes the number of signal frames in the training data set.
Now, the transformation matrix A shall be optimized such as to minimize the model

error y − ATx for the complete training data set. This training procedure results from a
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least squares approach, leading to minimization of the trace criterion

e2 = tr
[
(Fy − FxA)T(Fy − FxA)

]
. (6.48)

This is the Frobenius norm of the error Fy − FxA, namely the sum of squares of all
differences (estimation errors) yi(m)− ỹi (m). Derivation with respect to one element aij

of the transformation matrix A delivers (Scharf [233])

∂e2

∂aij

= −2 tr

[
(Fy − Fx A)TFx

∂A
∂aij

]
. (6.49)

For the minimization of e2, the zero point of the derivative (Eqn. 6.49) has to be found,
that is, Eqn. 6.49 has to be solved for the unknown matrix A. This leads to the condition

(Fy − FxA)TFx ≡ 0. (6.50)

Because this condition is independent of the position of the element aij , solving it is
sufficient for finding all elements of the transformation matrix A.

A unique solution for the least squares problem can be found if and only if the inverse
of the Gram matrix FT

x Fx exists6. Then, we arrive at the training algorithm

A = (FT
x Fx

)−1 FT
x Fy. (6.51)

Note that the calculation of Eqn. 6.51 is not trivial. It requires computation and inversion
of the Gram matrix FT

x Fx, which is a huge Nm ×Nm square matrix.
To verify the solution of Eqn. 6.51, we have to investigate the second derivative of the

trace criterion (Eqn. 6.48). With ∂2A
∂a2

ij

= 0, we get (Scharf [233])

∂

∂aij

(
∂e2

∂aij

)
= tr

[(
Fx

∂A
∂aij

)T

Fx
∂A
∂aij

]
≥ 0 (6.52)

which is the Frobenius norm of the matrix Fx
∂A
∂aij

and therefore always non-negative.
Accordingly, we can be sure that the solution of Eqn. 6.51 indeed minimizes Eqn. 6.48.

6.7.2 PIECEWISE-LINEAR MAPPING

The basic problem of the linear mapping approach described above is that the statistical
model of a linear dependency between feature vector x and spectral envelope representa-
tion y in general is too simple to describe the true relationship. Consequently, the linear
mapping approach has been extended by a preceding classification stage (Nakatoh et al.
[183], Chennoukh et al. [50]), to better reflect the possibly non-linear relationship between
x and y: first, a classification of the feature vector x(m) is performed. Then, if the ith

6
The inverse of the Gram matrix FT

x Fx exists iff the columns of Fx are mutually independent.
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Figure 6.22 Estimation of the wideband spectral envelope representation y via
piecewise-linear mapping

class has been detected, a specific matrix Ai is used to determine the estimated spectral
envelope representation ỹ by linear mapping as described in Eqn. 6.46. The method is
illustrated in Fig. 6.22.

For the first stage in Fig. 6.22, any classification method can be used. In literature, for
example, vector quantization of the feature vector x has been utilized in Nakatoh et al.
[183], or it was aimed at detecting certain phonemes via thresholding the reflection factors
of the narrowband speech in Chennouk et al. [50]. Instead of a hard classification, the first
stage in Fig. 6.22 can be enhanced to a soft decision scheme. Then, the final estimate ỹ is
determined by a weighted sum of individual mappings obtained for all classes (Nakatoh
et al. [183]).

For the training of a piecewise-linear mapping method, the mapping matrix Ai for the
ith class is computed by Eqn. 6.51 using only those signal frames from the training data set
for which the ith class has been detected by the classification rule. It appears advantageous
that the same classification rule is used during the training and application phase of the
BWE system. Otherwise, there might be a model mismatch in the class-specific linear
mapping matrices Ai .

6.8 GAUSSIAN MIXTURE MODEL

The linear mapping approach described above has the disadvantage that the statistical
model is principally limited to multivariate normal distributions. To employ more sophis-
ticated statistically optimized estimation schemes, a more exact model of the joint PDF
p(x, y), describing the joint behaviour of the two multi-dimensional random variables x
and y, is necessary (Park and Kim [200], Raza and Chan [220]). Then, even non-linear
dependencies of x and y may be exploited.

Because the dimension dim x + dim y of the joint PDF p(x, y) may be fairly large,
prohibiting the use of histograms owing to memory constraints, it is necessary in prac-
tice to approximate the PDF by some parametric model p̃(x, y). Then, only the model
parameters have to be obtained and stored in the off-line training phase.

For the definition of the joint PDF in the following, the two vectors x = [x0, . . . xb−1]T

and y = [y0, . . . yd−1]T shall be combined in the column vector z = [xT yT]T. A common
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way to model unknown high-dimensional real-world probability density functions is the
approximation with Gaussian mixture models (GMM, see e.g. Reynolds and Rose [222],
Vaseghi [287]). In these parametric models, the PDF is approximated by the sum of
weighted multivariate Gaussian distributions

p(x, y) ≈ p̃(x, y) = p̃(z) =
L∑

l=1

ρl N (z;µz,l , Vz,l) (6.53)

with mean vectors µz,l and covariance matrices Vz,l . The individual (b+ d)-dimensional
joint Gaussian densities (with dim z = b + d , b = dim x, d = dim y) are given by

N (z;µz,l , Vz,l) =
√

det Az,l

(2π)(b+d)/2
exp

(
−1

2
(z− µz,l)

TAz,l (z− µz,l)

)
, (6.54)

where µz,l = [µT
x,lµ

T
y,l]

T and Az,l is the inverse of the covariance matrix Vz,l

Az,l =
(

Axx,l Axy,l

Ayx,l Ayy,l

)
= V−1

z,l =
(

Vxx,l Vxy,l

Vyx,l Vyy,l

)−1

. (6.55)

The scalar weighting factors ρl in Eqn. 6.53 define the relative contribution of the lth
Gaussian distribution to the modelled PDF. The model represents a true PDF if the
weighting factors meet the constraints

0 ≤ ρl ≤ 1 and
L∑

l=1

ρl = 1. (6.56)

The parameters of the GMM are combined in the set � = {�l; l = 1, 2, . . . L} with
the subsets �l = {ρl, µz,l , Vz,l} of the respective parameters of the individual Gaussian
mixture components.

It has been shown that any smooth continuous probability density function can be
approximated arbitrarily closely by increasing the model order L (Sorenson [254]). To
show the qualitative behaviour, Gaussian mixture models with different orders L for an
exemplary two-dimensional random process are illustrated in Fig. 6.23.

6.8.1 MINIMUM MEAN SQUARE ERROR ESTIMATION

The minimum mean square error (MMSE) estimation rule shall take the joint PDF p(x, y)

into consideration. The aim of the MMSE criterion is the minimization of

DMSE(y, ỹ|x) = E
{
‖y− ỹ‖2

∣∣x}

=
∫
Rd

p(y|x) ‖y− ỹ‖2 dy (6.57)
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Figure 6.23 Contour diagrams of Gaussian mixture models for two-dimensional exem-
plary data. In the upper left diagram, a measured histogram of the training data is shown.
The other diagrams illustrate GMMs of this data with 1, 8, and 64 multivariate normal
distributions, respectively

The solution is the conditional expectation

ỹ = E
{
y|x} = ∫

Rd

y p(y|x) dy, (6.58)

which can be calculated in closed form from the parameters of a GMM of the joint PDF
p(x, y) (Park and Kim [200], Jax [128])

ỹ =
L∑

l=1

ρy|x,l

(
µy,l −

(
(x− µx,l)

T Axy,l A−1
yy,l

)T
)

. (6.59)

The ‘new’ weighting factors ρy|x,l are defined by

ρy|x,l = ρl N (x;µx,l, Vxx,l)

L∑
l=0

ρl N (x;µx,l, Vxx,l)

. (6.60)
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The parameters µx,l and Vxx,l of the marginal Gaussian densities N (x;µx,l, Vxx,l) can
be determined from the parameters of the GMM using the definitions from Eqn. 6.55.

Bandwidth extension using raw Gaussian mixture models has been introduced in Park
and Kim [200]. GMMs are also often used as parts of hidden Markov models (HMMs),
which will be treated in the next section.

6.8.2 TRAINING BY THE EXPECTATION-MAXIMIZATION ALGORITHM

The parameters of the Gaussian mixture model are determined and stored during an
off-line training phase. For the training of a GMM, a variety of algorithms have been
proposed, which are based on different optimization criteria, for example, Bahl et al. [24],
Gopalakrishnan et al. [94], Valtchev et al. [280], Schlüter and Macherey [235], Hedelin
and Skoglund [106], Povey and Woodland [212], and Yang and Zwolinksi [298]. Most of
these training algorithms have been applied to the training of statistical models for speech
recognition.

Here, the expectation-maximization (EM) algorithm shall be outlined, which is prevalent
in the GMM literature (e.g. Dempster et al. [59], Reynolds and Rose [222], Moon [175],
Vaseghi [287]). The optimization criterion in the EM algorithm is the maximization of
the log-likelihood function

L(�) = log

(∏
z∈�

p̃(z;�)

)
=
∑
z∈�

log

(
L∑

l=1

ρl N (z;�l)

)
. (6.61)

Consequently, the method realizes a maximum likelihood (ML) optimization of the param-
eters � of the model, corresponding to a minimization of the Kullback-Leibler distance
between the PDF p(x, y) and its model p̃(x, y) (Cover and Thomas [52]). The training of
the GMM is based on a set � of training vectors that are taken from the original random
process {x(m), y(m); m = 1 . . . Nm}. The number of data vectors in the training set is
denoted by N� = |�|.

Unfortunately, the log-likelihood term (Eqn. 6.61) contains the logarithm of a sum such
that a closed-form analytical solution for the maximization of L(�) cannot be formulated.
Instead, the EM approach leads to an iterative numerical training algorithm. The param-
eters ρl , µz,l , and Vz,l of the GMM are refined in each iteration step (with the iteration
index ν) by the following update equations

ρ
(ν+1)
l = 1

N�

∑
z∈�

ψ
(ν)
l (z),

µ
(ν+1)
z,l =

∑
z∈�

ψ
(ν)
l (z) · z

∑
z∈�

ψ
(ν)
l (z)

,

V(ν+1)
z,l =

∑
z∈�

ψ
(ν)
l (z) · (z− µ

(ν+1)
z,l

)(
z− µ

(ν+1)
z,l

)T
∑
z∈�

ψ
(ν)
l (z)

. (6.62)
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The variable ψl(z) is defined by the a posteriori probability

ψ
(ν)
l (z) = ρ

(ν)
l N (z;µ(ν)

z,l , V(ν)
z,l )

L∑
l=1

ρ
(ν)
l N (z;µ(ν)

z,l , V(ν)
z,l )

. (6.63)

For a detailed derivation of these terms, refer to the literature, for example, Dempster
et al. [59], Moon [175], and Vaseghi [287]. Note that by simple modification of the above
update rules, certain structures of the model parameters can be enforced, for example,
diagonal covariance matrices.

For the initialization of the model prior to applying the EM algorithm, the training
data set is sub-divided into clusters, for example, using the well-known binary-split LBG
algorithm (Linde et al. [162], cf. Sec. 6.6.1). The centroids and covariances of the feature
vectors that are assigned to the individual clusters are then used as the initial parameters
µ

(0)
z,l and V(0)

z,l of the model. The weighting factors ρ
(0)
l shall be proportional to the number

of feature vectors in the lth cluster.
It is a property of the EM algorithm that, provided the same large training data set

is used for each iteration, the log-likelihood function increases strictly monotonically
with every iteration step of the EM algorithm (Dempster et al. [59], Vaseghi [287]), that
is, L(�(ν+1)) ≥ L(�(ν)). The training is continued until the relative increase of the
log-likelihood between two iterations falls below a predefined value ε, that is, the stop
condition is

L(�(ν+1))− L(�(ν))∣∣L(�(ν))
∣∣ ≤ ε. (6.64)

Owing to the monotonical increase of the log-likelihood function during the training, it
is guaranteed that the EM algorithm approaches a local maximum of L(�). However, it
can, in general, not be guaranteed that the global maximum is found.

6.9 HIDDEN MARKOV MODEL

In this section, the source-filter model from Sec. 6.2 shall be extended by a hidden Markov
model (HMM). A HMM is a discrete-time composite source model (CSM), consisting
of a finite number of independent sub-sources that are controlled by a switch, compare
Fig. 6.24 (a). Each setting of the switch defines a state of the model, and for each state
of the model the statistical properties of the output signal of the CSM correspond to the
statistical properties of the selected sub-source. It is further assumed that the position of
the switch is governed by a Markov chain. In this case, the model is referred to as a
hidden Markov model in literature. The statistical characteristics of the state sequence
can be described by a matrix of transition probabilities. Further details on hidden Markov
models can be found in the literature, for example, Rabiner [215], Papoulis [199], Rabiner
and Juang [216], and Vaseghi [287].

The application of a hidden Markov model to the process of speech production is illus-
trated in Fig. 6.24 (a). The state Si of the source is represented by a switch that redirects
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Figure 6.24 (a) Hidden Markov model of the process of speech generation. The AR
filters Hi(z) and excitation signals ui(k) represent typical (wideband) speech sounds for
each state. (b) State transition diagram of an ergodic first-order Markov chain with NS = 3
states

the output of one of the sub-sources to the output s(k) of the HMM. The sub-sources of
the HMM correspond to individual source-filter models as introduced in Sec. 6.2.1. Each
of the sub-sources is assumed to be stationary and represents the characteristics of one
particular wideband speech sound. To simplify matters, state transitions are only allowed
at the boundaries of signal frames in the following. Further, the transition from any state
to any other state shall be possible, in which case the HMM is called ergodic7.

For the bandwidth extension application, the states of the HMM are defined by vector
quantization of the spectral envelope representation y (Jax et al. [129]). Every state Si of
the HMM corresponds to one entry ŷi of the VQ codebook Cy = {ŷ1 . . . ŷNS } such that the
number of states NS in the HMM is the same as the number of entries in the codebook.
The training of the VQ codebook is performed off-line with real wideband speech, using
the LBG algorithm (Linde [162]).

Per definition, if wideband speech is available, the true state of the source in the
mth frame can be determined by vector quantization of the spectral envelope representa-
tion y(m)

Strue(m) = Siopt(m) where iopt(m) = arg
NS
min
i=1

‖y(m)− ŷi‖2, (6.65)

The true state sequence is needed during the off-line training phase to obtain the param-
eters of the statistical model describing the Markov states.

Note that, with the above definition, the Markov state is not hidden during training.
Nevertheless, wideband speech is only available in the training phase whereas in the
application phase of the BWE system the states Si have to be identified from the features
x of the narrowband speech. Corresponding estimators will be described in Sec. 6.9.2.

6.9.1 STATISTICAL MODEL OF THE MARKOV STATES

For each possible state Si of the hidden Markov model, the features x as well as the
wideband spectral envelope representation y exhibit characteristic statistical properties.

7
In certain applications, for example, for speech recognition, it is useful to restrict the possible state transitions

to get directed state diagrams (e.g. a left–right model).
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To describe these properties, a statistical model that consists of three parts is employed:
the state and transition probabilities of the Markov chain, the probability density function
(PDF) of the feature vectors x of the bandlimited speech (observation probability), and the
PDF or expectation of the estimated quantity y (emission probability). We will elaborate
on these three parts of the statistical model below. The information that is contained in the
statistical model is needed as a priori knowledge for the subsequent estimation methods.

The training of the statistical model is performed off-line using a training database of
corresponding wideband and bandlimited speech signals. The wideband speech is needed
to calculate the true state sequence of the HMM. According to the true state Siopt of the
HMM, as defined by Eqn. 6.65, the vectors x and y are assigned to the corresponding
sets �i , i = 1 . . . NS ).

Observation Probability

As the observation probability, we define the conditional probability density function
p(x|Si ) of the feature vectors x. The conditioning is with respect to the state S such
that there exists a separate PDF p(x|Si ) for each HMM state Si . In accordance with
the definition of the HMM, it is assumed that the observation x(m) for each frame only
depends on the state Strue(m) of the Markov chain during that particular frame.

The modelling of the observation PDFs is complicated by the fact that the features
x are continuous variables. Further, they constitute multi-dimensional vectors with the
dimension b for each signal frame. Therefore, we use parametric Gaussian mixture models
(GMMs). The observation probability density is expressed by

p(x|Si ) ≈ p̃(x|Si ) =
L∑

l=1

ρil N (x;µil, Vil). (6.66)

For each state Si of the hidden Markov model, there exists an individual GMM with the
parameter set �i = {ρil, µil, Vil; l = 1, 2, . . . L}. The EM training procedure to determine
the parameters �i as well as some details on the structure and parameterization of GMMs
has already been described in Sec. 6.8.

The observation probability constitutes the connection between the state of the HMM
and the observed characteristics (features x) of the bandlimited speech signal snb(k).
Consequently, the observation probability is the decisive element of the statistical model of
the speech production process for detecting the momentary HMM state, and the modelling
of p(x|Si ) has to be implemented with special care.

Emission Probability

The emission probability describes the statistical characteristics of the variable y repre-
senting the estimated spectral envelope of the missing frequency band. The modelling of
the emission probability depends on the type of estimation rule that will be described in
Sec. 6.9.2.

If the estimation of y is based solely on the detection of the actual state of the HMM,
for example, by a ML (maximum likelihood ), MAP (maximum a posteriori ) or MMSE
soft classification (MMSE variant I), the only information on y that can be extracted from
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the conditional PDF p(y|Si ) is the conditional expectation E{y|Si}. Thus, it is sufficient
to store the vectors ŷi = E{y|Si} in a codebook. Note that this codebook is identical to
the codebook Cy of the constituting vector quantizer of the HMM.

In more sophisticated estimation rules, state-specific mutual dependencies between the
variables x and y are additionally taken into account. For such estimators the emission
probability is described by models of the conditional joint PDFs p(x, y|Si ). Since both x
and y are multi-dimensional, continuous variables, state-specific Gaussian mixture models
can be utilized to model these joint PDFs (compare Sec. 6.8).

Parameters of the Markov Chain

The dependencies between the states of consecutive frames shall be considered in the
statistical model. These dependencies are reproduced by the parameters of the Markov
chain in the HMM. In the sequel, depending on the modelling and exploitation of the
Markov chain parameters, the utilized a priori knowledge will be labelled as follows:

AK0: Only the probability of occurrence of the states is considered, that is, it is assumed
that the probability of a state is independent from the state of the source at preceding
or following frame instants.

AK1: A first-order ergodic Markov chain is assumed, that is, transition probabilities
between consecutive states of the source are taken into account.

State probability (AK0) The scalar value P(Si ) describes the (non-conditional) state
probability, that is, the a priori probability that the HMM is in state Si without incorpo-
rating any further observation or a priori knowledge, for example, of the feature vector
x, or of the state in preceding or following frames.

The state probabilities can easily be estimated by computing the true state sequence
for the wideband training material and counting the number of occurrences N�i

= |�i |
of each state Si . The ratio between the number of occurrences of state Si and the total
number Nm of speech frames in the training set gives the estimated state probability
P̃ (Si ) = N�i

/Nm. The resulting probability values are stored in a table such that the
actual bandwidth extension algorithm can later on access the a priori state probabilities
by simple table lookups.

Transition probabilities (AK1) The transition probability P(Si (m+1)|Sj (m)) describes
the conditional probability that the state of the source changes from state Sj in one signal
frame to state Si in the next frame.

Because the true state sequence is known during the training phase of the BWE algo-
rithm, the transition probabilities can be estimated as the ratio between the counted number
of occurrences of a particular transition from Sj to Si and the total number of occurrences
of state Sj . Because, in general, transitions from any state to any other state are possible
owing to the ergodicity of the Markov chain, a NS ×NS matrix (i.e. a two-dimensional
table) is necessary to store the transition probabilities for the later bandwidth extension.

Higher-order Markov modelling is possible, but the straightforward implementation
yields huge lookup tables to store the transition probabilities, and the computational
complexity of estimation rules increases exponentially with the model order.
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6.9.2 ESTIMATION RULES

The actual classification or estimation constitutes the final step towards the determination
of the coefficients ỹ representing the spectral envelope of the missing frequency band. In
this section, three well-known estimation methods are described, and their application in
the context of the estimation of the spectral envelope is depicted. Two of the three methods
are based on a posteriori probabilities that will first be defined in the next section. The most
important advantage of the HMM-based estimation rules using a posteriori probabilities
is that they explicitly use memory, that is they take observations from adjacent signal
frames into account.

6.9.2.1 Calculation of A Posteriori Probabilities

To be able to utilize a priori knowledge on the temporal dependencies of the states of
the hidden Markov model, we define the observation sequence X(mk) =

{
x(1) . . . x(mk)

}
containing all feature vectors that have been observed up to the mkth frame. Note that the
index mk of the most recently observed feature vector is allowed to be greater than the
frame index m of the currently processed signal frame, corresponding to an interpolation
or look-ahead. The a posteriori probabilities shall be expressed with respect to all observed
signal frames

P(Si (m)|X(mk)) = P(Si (m)|x(1), x(2), . . . x(m), . . . x(mk)). (6.67)

The definition and calculation of the a posteriori probabilities P(Si (m)|X(mk)) depends
on the kind of a priori knowledge that shall be utilized. According to the definitions from
Sec. 6.9.1, the two cases AK0 and AK1 will be distinguished in the following paragraphs.

No consideration of transition probabilities (AK0) If only the state probabilities of the
Markov chain shall be considered (AK0), it is assumed that the state of the source for
the mth frame of the signal only depends on the features x(m) observed for that frame.
Then, the a posteriori PMFs from Eqn. 6.67 can be simplified

P(Si (m)|x(1), x(2), . . . x(m), . . . x(mk)) = P(Si (m)|x(m)). (6.68)

Applying Bayes’ rule yields an expression for the a posteriori probabilities in which only
the modelled observation probabilities and state probabilities are contained

P(Si (m)|x(m)) = p(x(m)|Si (m)) P (Si (m))

p(x(m))

= p(x(m)|Si (m)) P (Si (m))

NS∑
j=1

p(x(m)|Sj (m)) P (Sj (m))

. (6.69)

First-order HMM (AK1) For a first-order hidden Markov model, the a posteriori PMF
P(Si (m)|X(mk)) is expressed in terms of the joint PDF p(Si (m), X(mk)) and the PDF
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p(X(mk)) of the observation sequence

P(Si (m)|X(mk)) = p(Si (m), X(mk))

NS∑
j=1

p(Sj (m), X(mk))

. (6.70)

The joint probability density function p(Si (m), X(mk)) can be determined as the prod-
uct of the observation probability density of the current feature vector x(m) and of two
components αi(·) and βi(·) that comprise the contributions of the observed feature vectors
from preceding and subsequent signal frames

p(Si (m), X(mk)) = αi(m) βi(m) p(x(m)|Si (m)). (6.71)

The two quantities αi(m) and βi(m) are calculated via forward and backward recursion,
respectively, thereby utilizing the complete available observation sequence.

The quantity αi(m) can be interpreted as the a priori probability p(Si (m), X(m−1)) of
the ith state of the HMM, considering all past observed feature vectors. The successive
calculation of αi(m) is based on the recursive equation

αi(m+ 1) =
NS∑
j=1

αj (m) p(x(m)|Sj (m)) P (Si (m+ 1)|Sj (m))

αi(1) = P(Si ). (6.72)

Because there exists no predecessor for the very first frame of the input speech, the
recursion has to be initialized with the non-conditional state probabilities P(Si ). Owing
to the recursive definition of αi(m) in Eqn. 6.72, it is not necessary to store all past frames
but it suffices to pass the a priori knowledge αi(m+ 1) from one frame to the other.

If future observations shall also be taken into account for the a posteriori probability,
that is, if mk > m, the terms βi(m) can likewise be calculated recursively

βi(m− 1) =
NS∑
j=1

βj (m) p(x(m)|Sj (m)) P (Sj (m)|Si (m− 1)). (6.73)

The initialization of the recursion has to be performed for the most recently observed signal
frame with the index mk by βi(mk) = 1. If no future observations shall be considered by
the estimation, the quantities βi(m) also have to be set to a value of βi(m) = 1 in the
calculation of the a posteriori probabilities (Eqn. 6.71).

6.9.2.2 Maximum Likelihood Classification

A widely used classification method is the maximum likelihood (ML) approach. This
estimation rule does not take the a priori knowledge on the state sequence into account.
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That codebook entry of Cy is selected which corresponds to that state of the HMM for
which the observation density of the currently observed feature vector is maximized

ỹML(m) = E
{
y|SiML(m)

} = ŷiML(m)

with

iML(m) = arg
NS

max
i=1

p(x(m)|Si (m)). (6.74)

Consequently, the range of possible output values of the ML estimator is limited to the
entries of the codebook. Note that the a posteriori probabilities from the previous section,
that is, the state and transition probabilities of the HMM, are not utilized.

There are, in fact, certain parallels between the ML classification rule and the codebook
mapping approach from Sec. 6.6: as with the primary codebook in Sec. 6.6, with Eqn. 6.74,
fixed regions of the b-dimensional feature space are assigned to fixed pre-trained spectral
envelope representatives8. The major difference is that the use of GMMs for p(x|Si )

allows for a much more flexible definition of those regions, and the HMM-based training
is more directly targeted on maximizing the estimation performance.

6.9.2.3 Maximum A Posteriori Classification

The goal of the maximum a posteriori (MAP) rule is to maximize the a posteriori proba-
bility mass function (PMF). Accordingly, that entry of the codebook Cy is selected which
is assigned to the state of the HMM for which the a posteriori PMF P(Si |X(mk)) is
maximum

ỹMAP(m) = E
{
y|SiMAP(m)

} = ŷiMAP(m)

with

iMAP(m) = arg
NS

max
i=1

P(Si (m)|X(mk)). (6.75)

Because the normative factor in the denominator of the fraction in Eqn. 6.70 is identical
for all states of the HMM, its value is irrelevant for the classification such that

iMAP(m) = arg
NS

max
i=1

p(Si (m), X(mk)). (6.76)

In contrast to the ML approach, a priori knowledge about the state sequence of the HMM
is utilized by the MAP method. The range of results of the estimation is, however, still
limited to the contents of the codebook Cy. The MAP rule minimizes the number of
mis-classifications of the HMM state.

8
Actually, codebook mapping with Euclidian distance criterion (e.g. d(x, x̂) = ‖x − x̂‖r with r > 0) can be

interpreted as a special case of Eqn. 6.74 if the covariance matrices in p̃(x|Si ) are fixed to Vil = σ 2 I in the EM
algorithm.
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6.9.2.4 Minimum Mean Square Error Estimation

Now, the range of results of the estimation shall no longer be limited to the contents of
the codebook Cy, but all values in the d-dimensional Euclidian space R

d are allowed. The
aim of the minimum mean square error (MMSE) optimization is to minimize the error
criterion

DMSE(y(m), ỹ(m)|X(mk)) = E
{
‖y(m)− ỹ(m)‖2

∣∣X(mk)
}

=
∫
Rd

p(y(m)|X(mk)) ‖y(m)− ỹ(m)‖2 dy(m). (6.77)

The integral in Eqn. 6.77 has to be solved for the complete d-dimensional parameter
space. The solution is the conditional expectation

ỹMMSE(m) = E
{
y(m)

∣∣X(mk)
}

=
∫
Rd

y(m) p(y(m)|X(mk)) dy(m). (6.78)

Because we do not have a model of the conditional PDF p(y(m)|X(mk)) in closed form,
this quantity has to be expressed indirectly via the states of the HMM

p(y(m)|X(mk)) =
NS∑
i=1

p(y(m),Si (m)|X(mk))

=
NS∑
i=1

p(y(m)|Si (m), x(m)) P (Si (m)|X(mk)). (6.79)

The second line in Eqn. 6.79 results from the model assumption that the vectors x(m)

and y(m) exclusively depend on the state S(m) of the source in the mth signal frame.
Inserting Eqn. 6.79 into Eqn. 6.78 yields the general state-based rule

ỹMMSE(m) =
NS∑
i=1

P(Si (m)|X(mk))

∫
Rd

y(m) p(y(m)|Si (m), x(m)) dy(m). (6.80)

Depending on the available statistical model of the emission probability (compare Sec.
6.9), that is, whether only the state-specific expectation of y or the a priori knowledge on
the joint PDF p(x, y|Si ) is at hand, two variants of MMSE estimators can be formulated.
In addition, the AK0 and AK1 assumptions can be used. We will, however, not distinguish
between these in the following.

Variant I: ‘soft classification’ For the first variant of MMSE estimation, the emission
probability shall be modelled without taking the observed feature vectors x into account.
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By this, the conditioning on the feature vector x(m) within the integral on the right-hand
side of Eqn. 6.80 is neglected, and the integral reflects the expectation of the coefficient
vector y on the condition that the source is in the state Si∫

Rd

y(m) p(y(m)|Si (m)) dy(m) = E{y(m)|Si (m)} = ŷi . (6.81)

The integral can be replaced by the corresponding entry ŷi of the pre-trained code-
book. Substituting the a posteriori probability defined in Eqn. 6.67, we derive the MMSE
classification rule

ỹMMSEI(m) =
NS∑
i=1

ŷi P (Si (m)|X(mk)). (6.82)

Hence, the estimated coefficient set ỹMMSEI is calculated by the sum of the individual
codebook entries that are weighted by the respective a posteriori probabilities of the
corresponding states of the HMM. Accordingly, the described MMSE estimator can be
interpreted as a soft classification. Note that with AK0 (with P̃ (Si ) = 1/NS ) and fixed
diagonal covariance matrices Vil = σ 2 I, the MMSE rule (Eqn. 6.82) results in an MMSE-
optimized codebook mapping approach with interpolation, compare Sec. 6.6.

Variant II: ‘cascaded estimation’ The second variant of the MMSE estimation rule
shall take the state-specific joint PDF p(x(m), y(m)|Si (m)) into consideration (Jax and
Vary [132]). Then, the integral on the right-hand side of Eqn. 6.80 reflects the conditional
expectation E

{
y(m)

∣∣Si (m), x(m)
}
. This conditional expectation can be calculated from

the parameters of a Gaussian mixture model of the joint PDF p(x(m), y(m)|Si (m)) as
described in Eqn. 6.59. Inserting the conditional expectation into Eqn. 6.80 leads to the
second MMSE estimation rule

ỹMMSEII(m) =
NS∑
i=1

E
{
y(m)|Si (m), x(m)

}
P(Si (m)|X(mk)). (6.83)

This estimation rule can be interpreted as a cascaded estimation: first the state-dependent
expectation of y is calculated for each state, followed by an individual weighting with
the respective a posteriori probabilities.

Compared to the first variant of the MMSE estimation from Eqn. 6.82, the second vari-
ant (Eqn. 6.83) should always provide better performance because additional information
is exploited from the observed features x. This advantage does not come for free, how-
ever, since the calculation of the expectation operation for GMMs with full covariance
matrices implies a higher computational complexity.

It can easily be seen that the GMM-based algorithm from Sec. 6.8 is a special case of
Eqn. 6.83, if only a single state NS = 1 is employed in the HMM. In this case, the sum
in Eqn. 6.83 degenerates to the conditional expectation ỹ(m) = E{y(m)|S1(m), x(m)}
because P(S1(m)|X(m)) = 1. This conditional expectation is identical to the estimation
rule (Eqn. 6.59) in Sec. 6.8.
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There are also certain parallels of special cases of variant II of the MMSE rule to
the linear mapping and piecewise-linear mapping methods from Sec. 6.7: if there is only
a single state in the HMM and one Gaussian in the mixture model of the emission
probability, that is, if NS = 1 and L = 1, the MMSE rule (Eqn. 6.83) also leads to
estimation of ỹ by linear transformation, though with consideration of the mean vectors
of x and y (cf. Eqn. 6.59). With one Gaussian in the emission PDF models p̃(x, y|Si )

and more than one state in the HMM, that is, if L = 1 and NS > 1, the MMSE rule of
Eqn. 6.83 resembles a piecewise-linear mapping approach with soft decision.

6.10 DISCUSSION

In the past, bandwidth extension algorithms for speech have reached a stable baseline
quality: the artificial wideband output of a BWE system is in general preferred to nar-
rowband telephone speech. Nevertheless, the quality of the enhanced speech is far from
reaching the quality of the original wideband speech. It would be desirable to further
improve the subjective speech quality of BWE systems.

With respect to the performance of wideband spectral envelope estimation, comparison
of the theoretical performance bound (e.g. Fig. 6.19) with the best actually achieved
estimation results (e.g. Fig. 6.20) yields a performance gap of about 3.2 and 2.3 dB for
high-frequency (3.4–7 kHz) and low-frequency (50–300 Hz) BWE of telephone speech,
respectively (Jax [128]). It is unclear, unfortunately, whether this gap can be closed by
more sophisticated estimation schemes, because the theoretical bound, in general, is not
tight. Some authors have come to the conclusion that improving the objective performance,
as, for example, measured in terms of log spectral distortion, of (memoryless) BWE for
speech may be very intricate (Epps [65], Nilsson et al. [186]).

To date, BWE for speech has mostly been developed for clean input speech. The vast
majority of the published approaches do not consider any adverse conditions such as
additive background noise or distortion of the narrowband input signal. To improve the
acceptance in practice in the wide range of possible applications, the robustness of BWE
for speech schemes has to be increased. Important issues in this respect are robustness
against additive background noises, and against input signals that differ from the model
assumptions, like music and so on. In such circumstances, at least the bandwidth extension
system should switch to a secure fallback mode, for example, similar to one of the generic
BWE algorithms as described in Chapters 3 and 5.
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Noise Abatement

7.1 A SPECIAL KIND OF NOISE REDUCTION

Pop-music reproduction or sound reinforcement in discos or at concerts at a very high
SPL is highly appreciated by the so-called ‘target group’ audience. For the neighbouring
community however, this can be very annoying, especially when these music sessions take
place during the night. A poor sound insulation (between adjacent houses, but also for
buildings at some distance) creates an inadmissible sound emission level in, for example,
bedrooms. Noise reduction methods of a constructional nature are, in most cases, very
expensive, and also take a considerable amount of time to be realized. This often causes
a temporary closing of the venue that creates the problem.

Another kind of option is to make use of ‘active’ noise reduction by signal-processing
means. In Aarts et al. [7], two options are discussed, which were applied in a real-
life situation of ‘noise pollution’. The first method uses ‘anti-sound’, which will not
be discussed here; the second method is based on low-frequency psychoacoustic BWE
technology, as discussed previously in Chapter 2.

7.2 THE NOISE POLLUTION PROBLEM – CASE STUDY

As mentioned above, sound insulation between the community homes and sound-producing
locations, such as clubs or entertainment venues, can be very poor. These places may
produce SPLs that can go far beyond 100 dB(A) in the evening hours. At these levels, local
authorities can force these sound producers to stop the music, to set a penalty in case of
transgression of the (local) laws, or even force them to close the premise. Sometimes, the
annoying sound follows paths that are unpredictable, and venue owners are not willing, or
not able, to make investments in constructional investigations and their solutions.

As a case example, we present a situation that existed at a club in The Netherlands,
where high SPLs were produced in the dwellings opposite of the club. The irritation of the
surrounding population was reinforced by the interrupted character of the disturbance (the
rhythmic ‘thumping’ that penetrated into the houses) and the time of day (late evening).
The spectrum of the ‘thumping’ was roughly 50–100 Hz. Beyond these frequencies, no

Audio Bandwidth Extension E. Larsen and R. M. Aarts
 2004 John Wiley & Sons, Ltd ISBN 0-470-85864-8
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Figure 7.1 Structural excitation measurement (dB rel. 1 µm/sec2) in a room of a housing
located near the club
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Figure 7.2 Structural background spectrum measurement (dB rel. 1 µm/sec2); same
room as in Fig. 7.1. At the time of this measurement, there was no music production
in the club (the excitation at 50 Hz was continuously present, and caused by a factory in
the neighbourhood – there had never been complaints about this signal)

transmission had been measured, see Fig. 7.1. Note that this is a spectrum of structural
vibration, not the spectrum as measured in air.

At the time of measurement, the SPL in the club was 112 dB. Figure 7.2 shows the
background signal in the same room, when there was no disturbance from the music
produced in the club. The annoyance was not caused by air transmission, but by vibra-
tions that travelled through the soil, or other underground structures, into the houses. Of
course, these vibrations were transformed to airborne sound by vibrations of the house
construction. The transmission paths were not known and would have been very difficult
to detect, which is why it was chosen to opt for an electro-acoustical/signal-processing
approach and not for constructional measures.
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A possible solution was to cut out the disturbing part of the frequency spectrum.
However, this was judged to be intolerable from a musical point of view. The alternate
method proposed was based on the principle of the ‘missing fundamental’ (see Sec. 1.4.5),
whereby the perception of pitch is not disturbed when low-number harmonics are elim-
inated. The actual method closely follows the concept of low-frequency psychoacoustic
BWE as discussed in Chapter 2. In the next section, we shall discuss the implementation
and result of applying this method to the described situation.

7.3 THE APPLICATION LOW-FREQUENCY PSYCHOACOUSTIC
BANDWIDTH EXTENSION TO NOISE POLLUTION

The concept of a noise-abatement low-frequency psychoacoustic BWE processor is based
on the principles of pitch perception (Sec. 1.4.5). In summary, the perceived pitch of a
signal consisting of a fundamental at f0 and higher harmonics will not change when the
fundamental at f0 is completely removed. The remaining harmonics will still mediate the
same strong pitch percept.

The algorithm follows the structure shown in Fig. 2.4 and the discussion presented there.
The main application area that was considered there was for enhanced low-frequency
reproduction on small loudspeakers. Thus, the goal was to emphasize all frequencies
below a certain value, for example, 100 Hz. Here, the goal is to emphasize signals with
pitches in the range 50–100 Hz by emphasizing their harmonics. Therefore, in the lower
branch of Fig. 2.4, the input signal is processed by a band-stop filter of 50–100 Hz, see
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Figure 7.3 Band-stop filter for the low-frequency psychoacoustic BWE noise-abatement
system. This filter eliminates the disturbing frequency components. This is compensated
by a complementary filter that feeds into a non-linear device that generates a harmonics
signal. This harmonics signal emphasizes the same low pitch of the bass sounds, but does
not cause any disturbance in the neighbouring community
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Figure 7.4 Structural excitation spectrum measurement (dB rel. 1 µm/sec2) during music
production in the club. The upper panel shows ‘before’, that is, without low-frequency
psychoacoustic BWE noise-abatement processing. The lower panel shows ‘after’, that is,
with low-frequency psychoacoustic BWE noise-abatement processing. Note that the peak
around 100 Hz had been completely removed, while the perceptual difference between
the two situations was judged to be small
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Figure 7.5 Short-term spectrum of representative music fragment measured (in air) in
the club, with and without low-frequency psychoacoustic BWE processing
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Fig. 7.3. This step eliminates the disturbing frequency components. To compensate for
this, the upper branch generates harmonics of the bass input fundamental frequencies. The
first filter complements the band-stop filter of the lower branch, thus it is a band-pass filter
of 50–100 Hz. The NLD generates higher harmonics, and FIL2 shapes the thus-generated
spectrum. An appropriate gain is applied to the harmonics signal after which it is added
back to the band-stop-filtered input signal. Using this approach, it was possible to stay
within the limits of the law in The Netherlands, even when the measured SPL in the club
reached 105 dB(A). An additional advantage was that frequencies below 50 Hz did not
cause annoyance and were thus not processed by dB. This is important as these very low
frequency components add ‘feel’ or ‘impact’ to the music sensation, which is appreciated
by the audience.

This procedure had completely removed the annoyance in the neighbouring houses.
Although annoyance is a subjective variable, it is made plausible by comparing measure-
ments shown in Fig. 7.4, which shows that the originally disturbing components between
50–100 Hz are removed after the dB processing. The quality of music as processed by the
low-frequency psychoacoustic BWE noise-abatement system was judged to be sufficiently
high such that this solution was adopted. The difference with the unprocessed sound could
be heard, with some effort, when doing an informal A/B test (rapidly switching the pro-
cessing on and off), but the club visitors would not normally notice any difference, in
particular because the processing would always be turned on. Figure 7.5 shows an illus-
trative example of the difference between the short-term spectra of the same music signal
with and without low-frequency psychoacoustic BWE processing.

In conclusion, low-frequency psychoacoustic BWE can be successfully applied to treat
noise pollution problems as caused by entertainment venues or concerts, and so on, if the
disturbing frequencies are relatively narrowband. The perceptual impairment is small, and
the main advantages are low cost, rapid implementation, and robustness. The alternative
method of constructional modifications can be very high cost, requires a much longer
implementation period, and success is sometimes difficult to guarantee. For constructional
measures, the advantage is obviously that the sound within the venue is not modified in any
way, but the disadvantages would usually be more important than this minor advantage.
Another signal-processing approach (discussed in the original treatment by Aarts et al. [7])
is using ‘anti-sound’, which only modifies the standing wave pattern inside the enclosure
(but not the power spectrum of the sound) and thus attempts to minimize the SPL in those
areas where acoustic energy is thought to propagate out of the enclosure, was found to
be much more delicate and time consuming than the low-frequency psychoacoustic BWE
approach.





8
Bandwidth Extension Patent
Overview

Here we present a chronological overview of BWE-related patents, from 1943 to 2004.
This overview has resulted from searches by the authors, and is not assumed to cover all
BWE patents. Specifically, the overview is limited to US patents; also, the kind of patents
included cover those areas that are more or less closely related to the material covered in
this book (including both low- and high-frequency BWE methods). As a resource, it is
hoped that this patent list will complement the list of cited references (these patents are
therefore not separately listed in the bibliography).

Each item in the list presents the key data for the patent (title and US patent number,
inventor, assignee, and date1), and is believed to be accurate but not guaranteed to be so.
The abstract is in most cases directly copied from the published abstract; deleted passages
are marked as (. . . ). Full text for US patents can be obtained from the US Patent and
Trademark Office (USPTO), which also maintains a website with a searchable database
(http://www.uspto.gov).

PSEUDO-EXTENSION OF FREQUENCY BANDS

Title: Pseudo-extension of frequency bands (2,315,248).
Inventor: Louis A. de Rosa.
Date: March 30, 1943

This invention deals with the pseudo-extension of frequency bands and particularly with
improvements in the method and means wherein an audio signal, at some point or at
some time in its transmission either directly or indirectly to the ear, is modified so that,
while all the composite frequencies present in the original audio signal are not present in
the signal ultimately transmitted to the ear, the auditory perception is of a sound that has
substantially all the sonant characteristics of the original audio signal.

1
Note that before June 8, 1995, patent protection expired 17 years after the patent was granted. After June 8,

1995, patent protection expires 20 years after the filing date.

Audio Bandwidth Extension E. Larsen and R. M. Aarts
 2004 John Wiley & Sons, Ltd ISBN 0-470-85864-8
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APPARATUS FOR IMPROVING SOUNDS OF MUSIC
AND SPEECH

Title: Circuit for simulating string bass sound (2,866,849).
Inventor: Charles D. Lindridge.
Assignee: one-fourth to L.C. Krazinski.
Date: December 30, 1958.

This invention relates to sound-reproducing systems, sound-reinforcing systems, music
and speech, and specifically to apparatus for improving sounds of music and speech in
which there is a deficiency of high frequencies received from the sound source. The
improvement is made by producing harmonics of frequencies higher than 3 kc in the
sounds and producing sounds at frequencies higher than 6 kc at a loudspeaker.

An object of this invention is to compensate for loss in sound at high frequencies due
to the use of a narrowband of frequencies in a transmission system or due in part to the
greater directivity of high frequencies in air relative to that at low frequencies, and in
part to the greater absorption of sound in air at normal room temperature and humidity
at high frequencies than at low frequencies.

(. . . )

AUDIO TRANSMISSION NETWORK

Title: Audio transmission network (2,379,714).
Inventor: R.L. Hollingsworth.
Assignee: Radio Corporation of America, Del.
Date: July 3, 1945

It is an object of this invention to improve the intelligibility or overall quality of a
band-limited audio signal, such as that received from radio transmissions.

CIRCUIT FOR USE IN MUSICAL INSTRUMENTS

Title: Circuit for use in musical instruments (3,006,228).
Inventor: J. P. White.
Date: October 31, 1961.

This invention relates to certain novel circuit arrangements that may be used to produce
a pleasing musical effect (. . . ) to produce tones rich in overtones or quality.

ARTIFICIAL RECONSTRUCTION OF SPEECH

Title: Artificial reconstruction of speech (3,127,476).
Inventor: Edward E. David.
Assignee: Bell Telephone Laboratories, Incorporated, New York, N.Y.
Date: March 31, 1964.
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This invention relates to the reconstruction of artificial speech from narrowband transmit-
ted signals, and has for its principal object the improvement of quality of such artificial
speech.

TONE GENERATION SYSTEM

Title: Tone generation system (3,213,180).
Inventor: Jack C. Cookerly and George R. Hall.
Date: October 19, 1965.

The object of the invention is ‘to provide a novel tone generation system in which output
tones are derived from the normal sound of the instrument, but in which such output
tones may have an entirely different quality so that the known instrument may be used to
generate tones sounding completely different from those characterizing the instrument’,
but are ‘nevertheless characterized by the manner in which the initiating natural tone of
the instrument is played by the musician’.

ELECTRICAL WOODWIND MUSICAL INSTRUMENT

Title: Electrical woodwind musical instrument having electronically produced sounds for
accompaniment (3,429,976).

Inventor: Daniel J. Tomcik.
Assignee: Electro-Voice Incorporated, Buchanan, Mich.
Date: February 25, 1969.

A monophonic wind-type instrument is disclosed, employing a piezoelectric pickup
communicating with the air column of the instrument. The piezoelectric pickup is utilized
to generate electrical signals that are amplified, filtered as to tone, and reproduced by
a loudspeaker. The electrical signals are also shaped and utilized to drive a pulse gen-
erator to produce multiples and sub-multiples of the frequency of the tone produced by
the woodwind instrument. The output of the divider is tone filtered to produce a voice
independent of the wind instrument. A gate circuit is provided between the trigger circuit
and divider to delay in actuation of the divider following initial production of a tone by
the instrument in order to avoid spurious mechanically excited electrical outputs.

MUSICAL INSTRUMENT ELECTRONIC TONE PROCESSING
SYSTEM

Title: Musical instrument electronic tone processing system (3,535,969).
Inventor: David A. Bunger.
Assignee: D.H. Baldwin Company, Cincinnati, Ohio.
Date: October 27, 1970.
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An audio tone from a musical instrument is applied to a phase splitter to provide two
oppositely phased tone signals, each of which is passed to a respective field effect transistor
transmission gate. In addition, the audio tone is converted to a square wave having the
same frequency as the fundamental frequency of the tone. The square wave is passed to a
frequency divider, which provides a pair of gating signals for the respective transmission
gates, the gating signals being oppositely phased and at half the fundamental frequency
of the tone. The oppositely phased tone signals are alternately passed by the gates and
combined in a tone colour filter circuit, which imparts specified musical tone qualities to
the combined signal. In addition, the original tone may be gated via a further field effect
transistor gate by a signal having a frequency that is one-quarter of the tone fundamental
frequency, the gated signal being passed to an appropriate tone colour filter. The original
tone is also passed directly to a tone colour filter. All of the filtered signals are then
amplified and passed to a loudspeaker system to provide an acoustic signal of substantially
greater tonal complexity than the original tone and which is controlled in frequency and
amplitude by the frequency and amplitude respectively in the input tone.

OCTAVE JUMPER FOR MUSICAL INSTRUMENTS

Title: Octave jumper for musical instruments (3,651,242).
Inventor: Chauncey R. Evans.
Assignee: Columbia Broadcasting System Inc. N.Y.
Date: March 21, 1972.

A bass or other guitar has a transducer for each of its strings, and each transducer is
connected to an octave-jumping circuit that lowers the musical tone produced by the indi-
vidual string, all without loss of either harmonics or amplitude variations. The waveform
of the fundamental frequency of each musical tone is squared, divided by two and then
amplitude modulated to follow the amplitude envelope of the original tone. The modu-
lated square wave contains only odd harmonics of the lowered frequency fundamental.
The missing even harmonics are restored by combining with the modulated square wave
the original tone containing all of its harmonics.

SPEECH QUALITY IMPROVING SYSTEM

Title: Speech quality improving system utilizing the generation of higher harmonic com-
ponents (3,828,133).

Inventors: Hikoichi Ishigami et al.
Assignee: Kokusai Denshin Denwa Kabushiki Kaisha, Tokyo-To, Japan.
Date: August 6, 1974.

A speech quality–improving system for a band-limited voice signal, comprising a branch-
ing circuit for dividing the band-limited voice signal into two branched signals, each
having the same waveform as the band-limited voice signal, a higher harmonic signal
generator for generating higher harmonic components of one of the two branched signals,
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and a combining circuit for combining the other of the two branched signals with the
generated higher harmonic components to provide a combined voice signal having an
improved speech quality realized by increasing the higher harmonic components of the
bandlimited voice signal. The higher harmonic generator comprises a cascade combina-
tion of an instantaneous compressor and a level range expander having reciprocal power
characteristics of the compression ratio of the instantaneous compressor.

AUDIO SIGNAL PROCESSOR

Title: Audio signal processor (4,144,581).
Inventor: Andrew Prudente.
Date: March 13, 1979.

Random audio signals are converted into sine waves of corresponding frequency and
duration, and harmonics are derived from the sine waves. The harmonics are controllably
attenuated and selectively inverted and combined to form an output signal. The conversion
of the random signals is effected by squaring the same to drive a Schmitt trigger that
feeds into a levelled integrator that leads to a diode function generator. The harmonics
are generated with the use of four-quadrant multipliers.

CIRCUIT FOR SIMULATING STRING BASS SOUND

Title: Circuit for simulating string bass sound (4,175,465).
Inventor: George F. Schmoll.
Assignee: CBS Inc., New York, N.Y.
Date: November 27, 1979.

In a circuit for simulating the sound produced when a stringed instrument, such as a bass
viol, is plucked, square wave signals of different frequencies from a tone generator are
combined to produce a synthesized saw-tooth wave form, which is applied to a low-pass
filter to remove the extremely high order harmonics, and then applied to an amplifier the
gain of which is controlled in accordance with an envelope signal having a fast attack and
a relatively slow decay. The resulting amplified signal is applied to an off-centre-biased
amplifier that alters the harmonic content of the output signal as a function of decay
time such that when the signal is acoustically reproduced it closely simulates the sound
produced when a bass viol string is plucked.

DETECTION AND MONITORING DEVICE

Title: Detection and monitoring device (4,182,930).
Inventor: David E. Blackmer.
Assignee: dbx Inc., Newton, MA.
Date: January 8, 1980.
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An improved audio signal processing system synthesizes from an audio signal, an enhanced
audio signal by sensing signal energy of the audio signal within a preselected frequency
portion of the audio signal, dividing the sensed signal energy into a plurality of discrete
bands according to the frequency thereof and generating, responsively to the signal energy
in each of the bands, a like plurality of second signals each of which includes frequency
components that are sub-harmonics of the frequencies of the corresponding frequency band.
The second signals are combined so as to provide a combined signal and the latter is added
to the audio signal to provide the enhanced audio signal.

FREQUENCY CONVERSION SYSTEM

Title: Frequency conversion system of tone signal produced by electrically picking up
mechanical vibrations of musical instruments (4,233,874).

Inventor: Rokurota Mantani.
Assignee: Nippon Gakki Seizo Kabushiki Kaisha, Hamamatsu, Japan.
Date: November 18, 1980.

An octave conversion system of the fundamental frequency of an audible tone signal pro-
duced by electrically picking up mechanical vibration of a musical instrument in which the
audible tone signal and an audible modulation signal having a frequency in a preselected
relation to the fundamental frequency of the tone signal are applied to a multiplier, which
is preferably constituted by a voltage-controlled amplifier. When the modulation signal
has a frequency half that of the tone signal, the tone signal is one-octave down-converted,
while, when the modulation frequency is equal to the tone signal frequency the tone sig-
nal is one-octave upconverted. With this frequency conversion system, the fundamental
wave component of the octave-converted tone signal has the same envelope as that of
the original tone signal. This frequency conversion system is advantageous in attaining
small-size versions of electric musical instruments and extension of inherent compasses
of electric musical instruments.

AUDIO PROCESSING SYSTEM FOR RESTORING BASS
FREQUENCIES

Title: Audio processing system for restoring bass frequencies (4,698,842).
Inventor: Gregory C. Mackie et al.
Assignee: Electronic Engineering and Manufacturing, Inc., Lynnwood, Wash.
Date: October 6, 1987.

An audio processing system for injecting left and right channel audio signals with a
signal having a fundamental frequency component that is half the frequency of the highest
amplitude low-frequency component in the left and right channel audio signals. The left
and right channel audio signals are combined to form a monaural signal that is low-pass
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filtered and applied to a demodulator circuit. The demodulator circuit generates a control
signal having a frequency that is half the frequency of the highest amplitude frequency
component in the signal at the output of the band-pass filter. The control signal varies
the phase of the signal at the output of the band-pass filter according to the polarity of
the control signal. The resulting signal is selectively added to the left and right input
signals. In order to prevent the audio processing circuit from producing annoying artefact
when the audio signals are vocally generated, a voice detector determines that the input
signals are from a vocal source and then disables the audio processing circuit. The voice
detector operates by comparing the monaural (left plus right) signal to a differential signal
(left minus right). Vocal source material has a relatively higher monaural signal, while a
musical source has a relatively higher differential signal.

SIGNAL SYNTHESIZER

Title: Signal synthesizer (4,700,390).

Inventor: Kenji Machida.

Date: October 13, 1987.

To enhance low- and high-frequency components in a sound signal, low-frequency compo-
nents are used to generate new yet lower frequencies (sub-harmonics), and high-frequency
components are used to generate new yet higher frequencies (harmonics), the new fre-
quencies added to the original signal thereby increasing the original signal bandwidth.

METHOD TO ELECTRONICALLY CLARIFY SOUND
OR PICTURE INFORMATION

Title: Method to electronically clarify sound or picture information and an arrangement
to carry out the method (4,731,852).

Inventor: Liljeryd, Lars G.
Date: March 15, 1988

A method for electronically clarifying sound or picture information and an arrangement
for carrying out the method. It was previously known to generate harmonics and sub-
harmonics of a useful signal within an audio or video frequency band and to add these
to the useful signal in order to improve the perceptibility. Undesirable intermodulation
products are generated, however, particularly the difference intermodulation products and
the non-linear amplitude ratio between generated harmonic components related to the
input signal. The suggested method eliminates substantially all of these undesirable inter-
modulation products completely and provides a linear amplitude ratio by forming two
orthogonal components from the useful signal, compressing one or both of these compo-
nents and multiplying the result to form the harmonics that are thereafter mixed with the
useful signal.
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LOW-PITCHED SOUND CREATOR

Title: Low-pitched sound creator (4,790,014).
Inventors: Koji Watanabe et al.
Assignee: Matsushita Electric Industrial Co., Ltd., Osaka, Japan.
Date: December 6, 1988.

An analog sound signal is outputted. Low-frequency components are selected from the
outputted analog sound signal so that a low-pitched sound signal is derived from the
analog sound signal. A key of the low-pitched sound signal is lowered so that a very
low pitched sound signal is derived from the low-pitched sound signal. The analog sound
signal and the very low pitched sound signal may be converted into corresponding sounds
respectively.

SUB-HARMONIC TONE GENERATOR FOR BOWED MUSICAL
INSTRUMENTS

Title: Sub-harmonic tone generator for bowed musical instruments (4,856,401).
Inventor: Richard E. D. McClish.
Date: August 15, 1989.

A device to produce sub-harmonic tone signals in response to a tone signal from a
transducer having preferably maximum sensitivity in the plane of bowing of a bowed
musical instrument by passing selected cycles of the transducer signal through signal
gates that are controlled jointly by sub-harmonic control signals at sub-multiples of the
fundamental frequency of the transducer signal and by a signal indicative of the detection
of a fundamental frequency. Each sub-harmonic tone signal thus produced has a tone
colour, which approximates that of the corresponding bowed musical instrument of the
same frequency range and which is independent of the direction of bowing.

LOW FREQUENCY AUDIO DOUBLING AND MIXING CIRCUIT

Title: Low frequency audio doubling and mixing circuit (EP0546619).
Inventor: Wayne Schott.
Assignee: US Philips Corporation, NY
Priority Date: December 9, 1991.

A circuit for doubling and mixing low-frequency audio signals includes an input for
receiving an audio signal having a substantially wide frequency range, a circuit coupled
to said input means for separating signal components in a low-frequency band of the
audio signal from the wide frequency range thereof, a frequency doubler coupled to
the separating circuit for doubling the frequencies of the signal components in the low-
frequency band, and a mixer for mixing the frequency-doubled signal components with
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the input audio signal, whereby the signal components in the low-frequency band now
also appear one octave higher.

MUSIC TONE PITCH SHIFT APPARATUS

Title: Music tone pitch shift apparatus (5,131,042).
Inventor: Mikio Oda.
Assignee: Matsushita Electric Industrial Co., Ltd., Osaka, Japan.
Date: July 14, 1992.

A music tone pitch shift apparatus that converts an original audio signal into digital
data by way of pulse code modulation (PCM), shifting the pitch, and converting the
pitch-shifted digital data into an analog signal. The PCM digital data is stored in a ring
memory at a given sampling speed, and is read out of the memory by a pair of identical
read circuits at a common read-addressing speed corresponding to the desired pitch. One
of the read circuits starts reading from the opposite address location to the other on the
ring memory. Since the read-addressing speed is set faster than the write-addressing speed
when increasing the pitch, and vice versa, overtaking or lapping between the addresses
could occur. In switching the read circuits from a now-outputting side to a switching-to
side alternately, the read address on the switching-to side circuit is stopped increasing at an
address location where a zero-amplitude data has been read, until a zero-amplitude data in
phase with that which the switching-to side circuit has read is read by the now-outputting
side circuit and the switching is made, immediately before the overtaking or lapping
occurs on the now-outputting side circuit. Thus, a smooth connection of the pitch-shifted
audio signals can be made without including such amplitude-modulated components as
in the cross fade method, and therefore, a high-quality music tone pitch shift operation
can be realized.

STRING INSTRUMENT SOUND ENHANCING METHOD
AND APPARATUS

Title: String instrument sound enhancing method and apparatus (5,218,160).
Inventor: Matthias Grob-Da Veiga.
Date: June 8, 1993.

A sound-enhancing apparatus for use with a string instrument has separate tone pickups
for picking up the tones of individual strings and circuits for, determining the fundamental
tones of these tones, multiplying the frequencies of these fundamental tones by small
integers, and/or dividing them by small integers and consequently producing harmonic
overtones and/or undertones. The thus-produced harmonic undertones and/or overtones
are selected and amplified according to fixed and/or adjustable criteria and finally admixed
with the original sound. The electronic apparatus for performing the process can operate
in analog or digital manner.
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DIGITAL RECONSTRUCTING OF HARMONICS TO EXTEND
BAND OF FREQUENCY RESPONSE

Title: Digital reconstructing of harmonics to extend band of frequency response (5,267,095).
Inventors: T. Hasegawa et al.
Assignee: Pioneer Electronic Corporation, Tokyo, Japan.
Date: November 30, 1993.

A PCM digital audio signal playback apparatus is provided for extracting from the digital
audio signal read out from a recording medium an original signal component ranging
lower than 1

2 of its sampling frequency fs , producing a harmonic from the original signal
component, extracting a harmonic component ranging higher than fs

2 from the harmonic,
and adding the harmonic component to the original signal component. Accordingly, a
high-frequency-carrying signal, for example, an impulse, is processed without causing
ringings in the waveform response.

TRANSIENT DISCRIMINATE HARMONICS GENERATOR

Title: Transient discriminate harmonics generator (5,424,488).
Inventor: Donn Werrbach.
Assignee: Aphex Systems, Ltd., Sun Valley, Ca.
Date: June 13, 1995.

A transient discriminate harmonics generator that receives an audio input signal and
produces an output signal containing harmonics of the input signal. The output signal
is amplitude shaped as a function of the input signal’s time and amplitude envelope.
The present invention, the transient discriminate harmonics generator generally com-
prises a control circuit for determining a control parameter, and a harmonics-generating
circuit regulated by the control circuit for producing an output signal containing har-
monics of an input signal, where the transient discriminate harmonics generator first
generates a relatively high level of harmonics at an initial occurrence of the input sig-
nal, then incrementally reduces the level of harmonies generated during a time period
determined by the control parameter following the initial occurrence of the input sig-
nal, and finally produces a relatively low level of harmonics after the end of the time
period.

SPEECH BANDWIDTH EXTENSION METHOD AND APPARATUS

Title: Speech bandwidth extension method and apparatus (5,455,888).
Inventor: Vasu Iyengar et al.
Assignee: Northern Telecom Ltd., Montreal, Canada.
Date: October 3, 1995.
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A speech bandwidth extension method and apparatus analyses narrowband speech sampled
at 8 kHz using LPC (authora comment: linear predictive coding) analysis to determine its
spectral shape and inverse filtering to extract its excitation signal. The excitation signal is
interpolated to a sampling rate of 16 kHz and analysed for pitch control and power level. A
white noise–generated wideband signal is then filtered to provide a synthesized wideband
excitation signal. The narrowband shape is determined and compared with templates in
respective vector quantizer codebooks, to select respective high-band shape and gain.
The synthesized wideband excitation signal is then filtered to provide a high-band signal
which is, in turn, added to the narrowband signal, interpolated to the 16-kHz sample rate,
to produce an artificial wideband signal. The apparatus may be implemented on a digital
signal processor chip.

MUSICAL TONE GENERATING APPARATUS EMPLOYING
MICRORESONATOR ARRAY

Title: Musical tone generating apparatus employing microresonator array (5,569,871).
Inventors: James A. Wheaton et al.
Assignee: Yamaha Corporation, Japan
Date: October 29, 1996

A musical tone–generating apparatus employs an array of microresonant structures to gen-
erate the harmonic component signals of a musical tone to be generated. The microreso-
nant structures produce high-frequency signals that are down-converted to audio-frequency
range by mixing them with a high-frequency reference signal. The desired tone colour is
achieved by modifying the relative amplitudes of the harmonic component signals to pro-
duce a desired tone colour. A large number of microresonators are preferably integrated
on a single integrated circuit substrate to provide a variable tone–generating system in a
relatively compact environment.

HARMONIC TONE GENERATOR FOR LOW LEVEL INPUT
AUDIO SIGNALS

Title: Harmonic tone generator for low level input audio signals and small amplitude
input audio signals (5,578,948).

Inventor: Soichi Toyama.
Assignee: Pioneer Electronic Corporation, Tokyo, Japan.
Date: November 26, 1996.

A harmonic tone generator produces a harmonics signal even for input audio signals
of small amplitude. Conversion of a digitized audio signal in accordance with a prede-
termined non-linear function is also performed for an audio signal of small amplitude.
According to the second aspect of the invention, a level difference between the digital
audio signal level in the present sampling time and the audio signal level in the preceding
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sampling time is detected and the detected level difference is converted to an output value
in accordance with a predetermined non-linear function by a non-linear converting circuit.
The converted output value is accumulated. According to the third aspect of the invention,
the detected level difference is converted to a function conversion output in accordance
with a predetermined function by a non-linear converting circuit. A gain of an amplifier
to amplify the audio signal in the present sampling time is changed in accordance with
the function conversion output.

LOW FREQUENCY AUDIO CONVERSION CIRCUIT

Title: Low frequency audio conversion circuit (5,668,885).
Inventor: Mikio Oda.
Assignee: Matsushita Electric Industrial Co., Ltd., Osaka, Japan.
Date: September 16, 1997.

A low-frequency audio conversion circuit for converting the frequency of low-frequency
audio components. An input audio signal includes a low-frequency audio component
lower than the frequency a speaker can reproduce. The low-frequency audio component
is filtered and extracted by a low-pass filter and full-wave rectified to generate even-
numbered harmonics of the low-frequency audio component. Secondary harmonics are
extracted from the even-numbered harmonics and added to the input audio signal after
being amplified to an appropriate level. When a speaker whose low-frequency sound
reproduction characteristics are poor is used, and a low-frequency component lower than
the frequency the speaker can reproduce is supplied, the low-frequency audio component
is reproduced as secondary harmonics, which fall within the frequency range of the
speaker. Thus, the low-frequency audio component is compensated, and a powerful sound
is reproduced at a low cost without degrading the sound.

DIGITAL SIGNAL PROCESSOR FOR ADDING HARMONIC
CONTENT

Title: Digital signal processor for adding harmonic content to digital audio signal
(5,748,747).

Inventor: Dana C. Massie.
Assignee: Creative Technology, Ltd., Singapore.
Date: May 5, 1998 (The term of this patent shall not extend beyond the expiration date

of 5,524,074, which was patented on June 4, 1996).

A digital audio signal processor for adding harmonic content to an input audio signal
through a non-linear transfer function with discontinuities. The discontinuities are gen-
erated by bit shifting each input value by an amount that is dependent on the sign and
magnitude of the input value. The amount by which the input value is shifted is roughly
inversely related to the magnitude of the logarithm of the input value. The transfer function
is fractal and so provides increased harmonic content for all signal amplitudes.
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AUDIO CIRCUIT

Title: Audio circuit (5,771,296).
Inventor: Toyoaki Unemura.
Assignee: Matsushita Electric Industrial Co., Ltd., Osaka, Japan.
Date: June 23, 1998.

An audio circuit for use in a television receiver and the like compensates for the capacity
shortage of a speaker box or low-frequency characteristic of the speaker to reproduce vivid
and voluminous low-frequency sound. L and R signals of the audio signal are mixed,
and then an arbitrary low-frequency band component is extracted therefrom by a filter
having an arbitrary frequency characteristic, and extracted component is bisected by a
distribution means, and only low-frequency band component is added to the original L
and R signals to reproduce the audio signal that is voluminous in a low-frequency band.
With a low-frequency band that is difficult to be reproduced by a speaker, the harmonic
is stressed by full-wave rectification means to stress low-frequency sound feeling, and
when a switching circuit is provided, low-frequency sound stressing by an amplifier and
low-frequency sound harmonic stressing by full-wave rectification means can be easily
switched.

METHOD AND DEVICE FOR PROCESSING SIGNALS

Title: Method and device for processing signals (5,828,755).
Inventor: E.E. Feremans and F. De Smet.
Date: October 27, 1998.

A method is set forth for processing signals, in particular for treating audio signals,
characterized in that it mainly consists in the supply of an input signal to be treated; in
the isolation of a number of signals from the input signal, which are mainly situated in a
predetermined part of the sound range; in the additional generation of higher harmonics
based on the isolated signals; and in the formation of an output signal by combining the
signal that contains the generated higher harmonics with at least a part of the above-
mentioned input signal, this input signal is either treated or not treated before being
combined.

AUDIO SIGNAL PROCESSING CIRCUIT FOR CHANGING
THE PITCH OF RECORDED SPEECH

Title: Audio signal processing circuit for changing the pitch of recorded speech (5,848,392)
Inventor: Katsuyuki Shudo.
Assignee: Victor Company of Japan, Ltd., Yokohama, Japan.
Date: December 8, 1998.
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A memory has storage segments at different addresses respectively. A write address sig-
nal represents an address that is periodically updated at a first frequency. Samples of an
audio signal are sequentially written into storage segments of the memory at addresses
represented by the write address signal, respectively. A read address signal represents an
address that is periodically updated at a second frequency lower than the first frequency.
Samples of the audio signal are sequentially read out from storage segments of the mem-
ory at addresses represented by the read address signal, respectively. After the address
represented by the write address signal overtakes the address represented by the read
address signal and until the address represented by the read address signal reaches the
address represented by the write address signal that occurs when the address represented
by the write address signal overtakes the address represented by the read address signal,
inhibition is given of writing of samples of the audio signal into storage segments of the
memory at addresses different from the address represented by the write address signal
that occurs when the address represented by the write address signal overtakes the address
represented by the read address signal.

METHOD AND SYSTEM FOR ENHANCING
QUALITY OF SOUND SIGNAL

Title: Method and system for enhancing quality of sound signal (5,930,373)
Inventor: Meir Shashoua and Daniel Glotter.
Assignee: K.S. Waves Ltd., Tel Aviv, Israel.
Date: July 27, 1999.

An apparatus for conveying to a listener a pseudo low-frequency psycho-acoustic sensation
(Pseudo-LFPS) of a sound signal, including: frequency unit capable of deriving from the
sound signal high-frequency signal and low-frequency signal (LF signal) that extends over
a low-frequency range of interest. Harmonics generator coupled to the frequency generator
and being capable of generating, for each fundamental frequency within the low-frequency
range of interest, a residue harmonic signal having a sequence of harmonics. The sequence
of harmonics, generated with respect to each fundamental frequency contains a first group
of harmonics that includes at least three consecutive harmonics from among a primary set
of harmonics of the fundamental frequency. Loudness generator coupled to the harmonics
generator and being capable of bringing the loudness of the residue harmonics signal to
match the loudness of the low-frequency signal. Summation unit capable of summing the
residue harmonic signal and the high-frequency signal so as to obtain psycho-acoustic
alternative signal.

ULTRA BASS

Title: Ultra bass (6,134,330).
Inventor: Gerrit F.M. De Poortere et al.
Assignee: US Philips Corporation, NY
Date: October 17, 2000
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To improve the perceived audio signal, it is known to use a harmonics generator to create
the illusion that the perceived audio includes lower-frequency signal parts than really
available. In addition to improving the perceived so-called ultra bass signals (for example
20–70 Hz), the signals in the frequency band between the ultra bass signal and the normal
audio signal are also improved.

IMPROVING THREE DIMENSIONAL AUDIO POSITIONING

Title: Method for introducing harmonics into an audio stream for improving three dimen-
sional audio positioning (6,215,879)

Inventor: M.J. Dempsey
Date: April 10, 2001

Method for introducing harmonics into an audio stream for improving three-dimensional
audio positioning. The method adds high-frequency harmonics into sampled sound signals
to replace high-frequency sound components eliminated before sampling. By adding high-
frequency harmonics into the sampled sound signals, a ‘richer sound’ will be produced.
The resulting sampled sound signals will have a frequency spectrum containing a larger
number of frequencies. Thus, the ear will have more cues to better position the sampled
sound signals.

SYSTEM AND METHOD FOR IMPROVING CLARITY
OF AUDIO SYSTEMS

Title: System and method for improving clarity of audio systems (6,335,973)
Inventor: Eliot M. Case
Assignee: Qwest Communications International Inc.
Date: January 1, 2002

A system and method for improving the clarity of an audio signal selects frequencies of the
audio signal for processing and adds even harmonic distortion to the selected frequencies,
preferably, of at least the second order. The system and method are particularly suited
for hearing aid, voice messaging, and telephony applications. In addition, the system and
method may be applied to other very low bandwidth signals, such as data-compressed
audio signals, computer voice files, computer audio files, and numerous other technologies
that have an audio response less than normal human perception. The technique also applies
to the use of perceptually coded audio.

PSEUDO-EXTENSION OF FREQUENCY BANDS

Title: Pseudo-extension of frequency bands (6,424,939).
Inventor: Jürgen Herre et al.
Assignee: Fraunhofer-Gesellschaft
Date: July 23, 2002
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A method for coding or decoding an audio signal combines the advantages of TNS
processing and noise substitution. A time-discrete audio signal is initially transformed
to the frequency domain in order to obtain spectral values of the temporal audio signal.
Subsequently, a prediction of the spectral values in relation to frequency is carried out
in order to obtain spectral residual values. Within the spectral residual values, areas are
detected encompassing spectral residual values with noise properties. The spectral residual
values in the noise areas are noise-substituted, whereupon information concerning the
noise areas and noise substitution is incorporated into side information pertaining to a
coded audio signal. Thus, considerable bit savings in case of transient signals can be
achieved.

AUDIO SYSTEM

Title: Audio system (6,678,380).
Inventor: R.M. Aarts
Assignee: US Philips Corporation, NY
Date: January 13, 2004.

An audio system includes a circuit for processing an audio signal, this circuit having
an input for receiving the audio signal and an output for supplying an output signal.
The circuit further includes a harmonics generator coupled to the input for generating
harmonics of the audio signal, and an adding circuit coupled to the input as well as to the
harmonics generator for supplying a sum of the audio signal and the generated harmonics
to the output. The harmonics generator is embodied so as to limit the amplitude of the
generated harmonics.

SOURCE CODING ENHANCEMENT USING SPECTRAL-BAND
REPLICATION

Title: Source coding enhancement using spectral-band replication (6,680,972).
Inventor: L.G. Liljeryd et al.
Assignee: Coding Technologies Sweden AB
Date: January 20, 2004

The present invention proposes a new method and apparatus for the enhancement of
source-coding systems. The invention employs bandwidth reduction prior to or in the
encoder, followed by spectral-band replication at the decoder. This is accomplished by
the use of new transposition methods, in combination with spectral envelope adjustments.
Reduced bit rate at a given perceptual quality or an improved perceptual quality at a
given bit rate is offered. The invention is preferably integrated in a hardware or software
codec, but can also be implemented as a separate processor in combination with a codec.
The invention offers substantial improvements practically independent of codec type and
technological progress.
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SOUND AND VISION SYSTEM

This is a European patent application, included for reference (see Sec. I.2.1).

Title: Sound and vision system (European patent application EP02708577)
Inventor: R.M. Aarts and M.T. Johnson
Assignee: Royal Philips Electronics N.V.
Date: Filed March 20, 2002

A sound and vision system comprising a display device and an acoustic transducer means,
such as a loudspeaker or a microphone. The display device includes display cells having
opposite electrodes and includes a conductive means connected to the electrodes in order
to address said display cells. The acoustic transducer means is formed by a display cell
and the conductive means is electrically coupled to the acoustic transducer means in order
to convey signals, as a result of which the acoustic transducer means is an integral part
of the display device.





Appendix A

Multidimensional Scaling

A.1 INTRODUCTION

A problem encountered in many disciplines is how to measure and interpret the relation-
ships between objects (Aarts [4]). A second problem is the general lack of a mathematical
relationship between the perceived response and the actual physical measure. Sometimes
relationships are rather vague. How much does the character of one person resemble that
of another? Or in the case of this book, to what extent are various processing methods
alike? How do we measure and what scale do we need? In the following text, we discuss
some scales and techniques and give some examples.

A short but authoritative introduction to multidimensional scaling(MDS) is Kruskal’s
book [151]. A comprehensive survey of the development of MDS is that of Caroll &
Arabie [46], which cites 334 references, mostly published during the 1970s. More recent
are the surveys by Young [303] and (on general scaling) by Gescheider [88]. The latter is
more about sensory and cognitive factors that affect psychophysical behavior than about
measurement and computational aspects. A review intended for a wide, generally scientific
audience, concerning the models and applications of MDS and cluster analysis, has been
provided by Shepard [246].

A.2 SCALING

The purpose of scaling is to quantify qualitative data. Scaling procedures attempt to do
this by using rules that assign numbers to qualities of things or events. Multidimensional
scaling is an extension of univariate scaling (App. A.7); it is simply a useful mathematical
tool that enables us to represent the similarities of objects spatially as in a map.

MDS models may be either metric or non-metric, depending on the scale of measure-
ment used in collecting the data. For metric scaling, the collected data should be measured
using an interval or ratio scale. In the former case, the unit of the ‘yardstick’, used for
measuring the phenomenon, as well as the zero point (offset) are unknown. For a ratio
scale, the zero point is known but there is an unknown scaling factor. For non-metric
MDS, only the ranking order of the data values is used; the data are, or are used at, an
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ordinal level. However, it is sometimes possible to recover metric distances obtained by
non-metric MDS, as will be shown in an example later on.

In order to obtain a spatial map from an MDS computer program, we only need to
apply a set of numbers as the input. To all (or most) combinations of pairs out of a group
of objects, a number is assigned, which expresses the similarity between the objects of
that pair. Such numbers are sometimes referred to as proximities. MDS procedures will
then represent objects judged similar to one another as points close to each other in the
resulting spatial map. Objects judged to be dissimilar are represented as points distant
from each other.

MDS programs that use direct similarity measures as input have the advantage of being
low in experimental contamination. They do not require a prior knowledge of the attributes
of the stimuli to be scaled.

A.3 EXAMPLE

An obvious procedure for obtaining similarity data is to ask people directly to judge the
‘psychological distance’ of the stimulus objects. Another way is the method of triadic
comparisons (Levelt et al. [159]). This has the advantage that it simplifies the subject’s
task, because only the ranking order of three presented stimuli is asked for. However,
there can be some drawbacks, as pointed out by Roskam [229]. A practical problem arises
when for a complete experiment the number of triads (all possible combinations of three
stimuli out of the set of all stimuli) is considered too large. It can be reduced by using
an incomplete balanced block design (BIBD).

As an example of MDS using triadic comparisons, consider the following. Suppose
someone with a good topographical knowledge of The Netherlands is asked to give the
nearest city and the most distant city out of three given cities. The same question is asked
for three other cities, and so on, until each distance from one city to another (each out of
a total list of 14 cities) is considered. A matrix M can be constructed so that for the three
cities (i,j,k) the two closest together, for example, (i,j) contribute 0 points to the matrix
element M(i,j), the next closest pair, for example, (j,k), adds 1 point, and the remaining
pair adds two points to M(i,k). The (dissimilarity) matrix obtained in this way resembles
an ordinary distance table. If the phrases most distant and nearest in the question are
interchanged, one obtains a similarity (data) matrix.

Instead of relying on a topographer, we used an ordinary distance table as input for
the program. The program we applied was KYST-2a, pronounced ‘kissed’, formed from
the names Kruskal, Young, Shepard, and Torgerson. It gives the coordinates of the cities
in one or more dimensions. The analysis was carried out for both the metric case (with
linear regression) and the non-metric case. In the latter case, the actual number of miles
was not used. However, the ranking order of the calculated interpoint distances should be,
as far as possible, the same as the ranking order of the interpoint distances in the given
distance matrix. The results of both the metric and the non-metric cases were practically
the same. Only the results of the latter case will be discussed in the following.

All calculations were carried out in the Euclidian space (Minkowski’s parameter = 2).
A measure of the goodness of fit between both rankings is called stress, which can to
some extent be compared with a least-squares sum in an ordinary fitting procedure. The
stress value in this particular case is 0.249 for one dimension, 0.028 for two dimensions,
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and 0.013 for three dimensions. It appears that a two-dimensional fit is a good one. The
decrease of stress in three dimensions is rather weak, while the deterioration due to a low
dimensionality is obvious. The results of the calculations are plotted in Fig. A.1; the solid
points are the real locations, whereas the small circles represent the calculated places. As
the figure shows, in this particular case it is possible to derive metric data from non-metric
input data. The orientation of the map is arbitrary; there is no real North–South axis. For
convenience only, the contour of the Netherlands and a compass needle are drawn.

A second example is from Ekman’s [63] similarity judgement among 14 colours varying
in hue. Subjects made ratings of qualitative similarity for each pair of combinations of
colours ranging in wavelength from 434 to 674 nm. Shepard [245] applied a non-metric
MDS procedure to the similarity ratings and extracted the underlying structure depicted by
Fig. A.2. The underlying structure recovered from Ekman’s similarity data was simply
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the conventional colour circle, with the colours arranged along the smooth contour in
order of increasing wavelength.

A.4 PROCEDURE

The input data, δij or proximities, are numbers that indicate how similar or how different
two objects are, or are perceived to be. The distance between the points i and j in the
configuration, which reflects the ‘hidden structure’ is denoted by dij . The basic concept
takes the form that

f (δij ) = dij , (A.1)

where f is of some specified type. The discrepancy between f (δij ) and dij is then

f (δij )− dij . (A.2)

An objective function that is called stress is

S1 =

√√√√√√√√
∑

i

∑
j

[f (δij )− dij ]2

∑
i

∑
j

dij
2

(A.3)

The values f (δij ) are often called fitted distances and denoted by d̂ij ; sometimes, they are
also called ‘disparities’. When the only restriction for f is that it has to be monotonous,
then the procedure is of the non-metric type.

A.5 PRECAUTIONS CONCERNING THE SOLUTION

The interpretation and generation of the configuration map should both be monitored care-
fully, as undesirable results can occur, which render any use of the configuration inadvis-
able (Kruskal et al. [152]). Before attempting to interpret the configuration, the user should
always check for these possibilities, beginning with the inspection of δ − d , the Shepard
diagram (i.e. the scatter plot of recovered distances versus data values). Some anomalous
δ − d configurations are discussed below. The relation between stress and significance is
studied by Wagenaar and Padmos [292], and is discussed in the next section.

Jaggedness of the fitted function: The function relating distances to data values will always
be somewhat jagged. However, this function should in fact approximate a smooth and
continuous curve. Since the user is assuming an underlying continuous function, a
configuration associated with a step function is undesirable. There are, however, two
possible remedies for step-functions. One is the possibility of a local minimum, hence
different initial values have to be tried. The second remedy is to specify a stronger
form of regression.
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Clumping of stimulus points: This is when several distinct objects occur at the same posi-
tion in the Shepard diagram. The phenomenon is associated with undesirable behaviour
of the fitted function (i.e. the d values) in the region of the smallest dissimilarities. The
antidote for undesirable clumping is to declare a different form of regression, perhaps
with a preliminary transformation of the data as well.

Degeneracy : A degenerate solution is an extreme case of both clumping (clustering) and
jaggedness. Usually the stress is in this case zero, or nearly so. Hence, a very small
stress value can indicate an utterly useless solution instead of an exceptionally good one.
This result often occurs when, for one or more subsets of the stimuli, the dissimilarities
within that subset are smaller than the dissimilarities between stimuli in that subset and
the remaining stimuli (Shepard [245]). Possible solutions are (1) separate the clusters,
(2) scale them separately and combine them in a later run (3) use the FIX option, or
(4) a form of regression stronger than monotone can be specified.

A.6 SIGNIFICANCE OF STRESS

For the representation of an arbitrary dissimilarity matrix by distances between n points
in m dimensions, a probability p(s) exists that a stress value ≤ s will be obtained
by chance. For the determination of the probability distributions p(s), the dissimilarity
matrices contained the numbers from 1 to 0.5n(n − 1) and were attributed randomly
to the cells. In this way, 100 ‘random scatters’ were produced and analyzed by the
MDS technique in various dimensions. The results are in Table A.1. The empty cells in
Table A.1 correspond to conditions where more than 5% of the scatters have a stress
smaller than 0.5%; it is advisable never to use MDS in these conditions.

A.7 UNIVARIATE SCALING

The purpose of scaling is to quantify the qualitative relationships between objects by
scaling data. Scaling procedures attempt to do this by using rules that assign numbers to
qualities of things or events. Here we discuss univariate scaling, in contrast to multidimen-
sional scaling. Univariate scaling is usually based on the law of comparative judgement

Table A.1 The maximum stress in percentages,
which can be accepted at a significance level of
α = 0.05 for n points in m dimensions, from
Table III of Wagenaar and Padmos [292]

m = 1 2 3 4 5

n = 7 20 7 – – –
8 27.5 10 1.5 – –
9 30.5 13 5.5 1 –

10 34 15 7 3 –
11 35 18 9.5 4.5 1
12 39.5 20.5 10 6.5 3.5
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(Torgerson [276], Thurstone [270]). It is a set of equations relating the proportion of
times any stimulus i is judged greater, or has higher appreciation for a given attribute,
than any other stimulus j . The set of equations is derived from the postulates presented
in Torgerson [276]. In brief, these postulates are:

1. Each stimulus when presented to an observer gives rise to a discriminal process, which
has some value on the psychological continuum of interest (e.g. in the context of this
book, appreciation for a particular processing method as judged by listening to a
processed signal).

2. Because of momentary fluctuations in the organism, a given stimulus does not always
excite the same discriminal process. This can be considered as noise in the process.
It is postulated that the values of the discriminal process are such that the frequency
distribution is normal on the psychological continuum.

3. The mean and standard deviation of the distribution associated with a stimulus are
taken as its scale value and discriminal dispersion respectively.

Consider the theoretical distributions Sj and Sk of the discriminal process for any two
stimuli j and k respectively, as shown in the upper panel of Fig. A.3. Let Sj and Sk

correspond to the scale values of the two stimuli and σj and σk to their discriminal
dispersion caused by noise.

Now we assume that the standard deviations of the distributions are all equal and con-
stant (as in Fig. A.3), and that the correlation between the pairs of discriminal processes
is constant; this is called ‘Condition C’ by Torgerson [276]. Since the distribution of the
difference of the normal distributions is also normal, we get

Sk − Sj = cxjk, (A.4)

Sj Sk

Sj Sk

–

– –

–
Sk − Si0

Figure A.3 The upper panel shows two Gaussian distributions corresponding to stimuli
j and k, having different mean values (Sj and Sk). The probability that k is judged to be
larger than j is given by the shaded area in the lower panel
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where c is a constant and xjk is the transformed (see Eqn. A.7) proportion of times
stimulus k is more highly appreciated (or judged greater) than stimulus j . Equation A.4
is also known as Thurstone’s case V. The distribution of the discriminal differences is
plotted in the lower panel of Fig. A.3. Equation A.4 is a set of n(n − 1) equations with
n + 1 unknowns, n scale values and c. This can be solved with a least-squares method.
Setting c = 1, and the origin of the scale to the mean of the estimated scale values, that is,

1/n

n∑
j=1

sj = 0, (A.5)

we get

sk = 1/n

n∑
j=1

xjk. (A.6)

Thus, the least-square solution of the scale values can be obtained simply by averaging
the columns of matrix X; however, the elements xjk of X are not directly available. With
paired comparisons we measure the proportion pkj that stimulus k was judged greater
than stimulus j . This proportion can be considered as a probability that stimulus k is in
fact greater than stimulus j . This probability is equal to the shaded area in Fig A.3, or

xjk = erf(pjk), (A.7)

where erf is the error function (Abramowitz and Stegun [12, 7, 26.2]), which can easily be
approximated (Abramowitz and Stegun [12, 26.2.23]). A problem may arise if pjk ≈ ±1
since |xjk| can be very large. In this case, one could simply replace xjk by a large value.

It may be noted that this type of transformation is also known as Gaussian transform,
where instead of the symbol x, z is used, known as the z scores. Instead of using Eqn. A.7,
other models are used, for example, the Bradley–Terry model, see David [56]. All forms
of the law of comparative judgement assume that each stimulus has been compared with
other stimuli a large number of times. The direct method of obtaining the values of pjk

is known as the method of paired comparisons, see, for example, David [56].
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[74] W. Flügge. Viscoelasticity. Blaisdell Publishing Company, 1967.
[75] F.J.M. Frankort. Vibration and Sound Radiation of Loudspeaker Cones. PhD thesis,

Delft University of Technology, 1975.
[76] N.R. French and J.C. Steinberg. Factors governing the intelligibility of speech

sounds. J. Acoust. Soc. Am., 19:90–119, 1947.
[77] J.A. Fuemmeler and R.C. Hardie. Techniques for the regeneration of wideband

speech from narrowband speech. In IEEE Workshop on Nonlinear Signal and Image
Proceedings, Baltimore, MD, June 2001.

[78] J.A. Fuemmeler, R.C. Hardie, and W.R. Gardner. Techniques for the regeneration
of wideband speech from narrowband speech. EURASIP J. Appl. Signal Process.,
2001(4):266–274, 2001.

[79] K. Fukunaga. Introduction to Statistical Pattern Recognition. Morgan Kaufmann,
Academic Press, 2nd edition, San Francisco, San Diego, 1990.

[80] S. Furui. Digital Speech Processing, Synthesis and Recognition. Marcel
Dekker, 1989.

[81] K.R. Gabriel. The biplot graphical display of matrices with application to principal
component analysis. Biometrika, 58:453–467, 1971.

[82] A. Gabrielsson and B. Lindström. Perceived sound quality of high-fidelity loud-
speakers. J. Audio Eng. Soc., 33(1/2):33, 1985.

[83] W.S. Gan, S.M. Kuo, and C.W. Toh. Virtual bass for home entertainment, multi-
media PC, game station and portable audio systems. IEEE Trans. Cons. Electron.,
47(4):787–793, 2001.

[84] M.R. Gander. Fifty years of loudspeaker developments as viewed through the per-
spective of the audio engineering society. J. Audio Eng. Soc., 46(1/2):43–58, 1998.

[85] E. Geddes and L. Lee. Audio Transducers. 2002.
[86] C.D. Geisler. From Sound to Synapse: Physiology of the Mammalian Ear. Oxford

University Press, 1998.
[87] A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer

Academic Publishers, Boston, Dordrecht, London, 1992.
[88] G.A. Gescheider. Psychological scaling. Annu. Rev. Psychol., 39:169–200, 1988.
[89] B.R. Glasberg and B.C.J. Moore. Derivation of auditory filter shapes from notched-

noise data. Hear. Res., 47:103–138, 1990.
[90] B.R. Glasberg and B.C.J. Moore. A model of loudness applicable to time-varying

sounds. J. Audio Eng. Soc., 50(5):331–342, 2002.
[91] J.L. Goldstein. Auditory nonlinearity. J. Acoust. Soc. Am., 41(3):676–689, 1967.
[92] J.L. Goldstein. An optimum processor theory for the central formation of the pitch

of complex tones. J. Acoust. Soc. Am., 54(6):1496–1516, 1973.
[93] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins University

Press, 1989.
[94] P.S. Gopalakrishnan, D. Kanevsky, A. Nádas, and D. Nahamoo. A generalization
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